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PREFACE 

IT  is  held  by  a  good  many  people — and  I  am  not 

concerned  to  contradict  them — that  the  time  spent  by 

music-students  in  acquiring  a  knowledge  of  Acoustics 

is  time  wasted.  The  fact  however  remains  that  many 

students  do  so  spend  some  of  their  time ;  and  musical 

examinations,  by  asking  questions  on  the  subject,  force 

them  to  continue  doing  so.  And  I  suppose  every  one 

will  agree  that,  if  a  subject  must  be  studied,  it  is  best 

to  study  it  intelligently. 

The  experience  of  a  good  many  years,  both  in 

teaching  and  examining,  has  convinced  me  that  very 

few  students  ever  succeed  in  grasping  the  underlying 

principles  of  Acoustics  at  all.  They  acquire  the 

jargon,  and  store  their  minds  with  text-book  facts  ;  but 

they  seldom  grip  the  scientific  basis  on  which  the 

theory  of  sound  is  built.  And  in  support  of  this 

contention  I  will  advance  two  conclusions — it  would 

be  easy  to  give  a  dozen — to  which  I  am  driven  by 

the  answers  to  questions  set  in  examination-papers. 

Firstly,  it  is  obvious  that  the  majority  of  students 

(I  am  speaking  always  of  music-students)  believe  that 
A  2 
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wave-curves — so  familiar  to  any  one  who  has  ever 

opened  a  book  on  Sound — are  the  actual  pictorial 

representation  of  something  which  occurs  in  the  air ; 

and  the  true  meaning  of  the  essential  word  'asso- 

ciated '  has  never  dawned  on  them.  Secondly,  I  have 
never  yet  been  convinced  by  an  answer  to  any  question 

on  equal  temperament  that  the  candidate  really  under- 

stood the  bearing  on  the  question  of  the  twelfth  root 
of  two. 

The  truth  is,  of  course,  that  the  understanding 

of  the  principles  of  Acoustics,  as  distinct  from  the 

cramming  of  a  number  of  facts,  depends  entirely  on 

the  grasp  of  a  few  elementary  mathematical  concep- 

tions ;  and  no  book  on  the  subject,  so  far  as  I  can 

find,  recognizes  the  fact  that  to  the  ordinary  music- 

student  mathematics,  however  elementary,  is  not 

familiar  ground.  So  I  have  tried  in  this  book  to 

explain,  in  separate  chapters,  each  fundamental  mathe- 

matical idea  at  the  point  where  the  understanding  of 

it  becomes  vital ;  and  I  have  done  my  utmost  to  put 

such  explanations  into  language  which  can  be  com- 

prehended by  any  one  whose  knowledge  of  ordinary 

arithmetic  goes  as  far  as  vulgar  fractions. 

Any  student  who  can  understand  Chapters  III,  VI, 

X,  XIII,  XV,  XVI,  and  XVII  should  find  the  rest  of 

the  book  easy  reading ;  but  those  to  whom  the  above 

chapters  are  incomprehensible  can  never  hope,  in  my 
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belief,  to  understand  the  drift  of  the  subject  or  the 

principles  on  which  its  laws  are  founded. 

I  have  to  thank  Miss  Townsend  Warner,  Mr.  W.  J. 

R.  Calvert,  and  Mr.  D.  H.  Nagel  for  their  kindness  in 

reading  manuscript  and  proofs,  and  giving  other  help 
and  advice. 

P.  C.  B. 

HARROW-ON-THE-HlLL, 

December,  1917. 
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PRELIMINARY  CHAPTER 

WHEN  a  man  sets  out  to  study  the  Art  of  Music  he  is,  in 
all  probability,  under  the  impression  that  he  is  dealing  with 
a  homogeneous  and  isolated  subject ;  but  before  long  he 
will  be  forced  to  realize  that  his  study,  if  it  is  to  be  in  any 

sense  far-reaching,  must  embrace  a  great  number  of  subjects 
each  of  which  is  in  itself  merely  a  subsidiary  and  component 
part  of  a  wide  and  comprehensive  whole.  It  is  easy  and 
usual  to  speak  of  these  subjects  as  if  each  one  were,  alone 
and  by  itself,  a  complete  branch  of  the  art  and  a  fit  field 
for  the  confined  study  of  the  specialist.  But  such  a  custom 
is  both  illogical  and  unwise :  illogical  because  branches  imply 
a  trunk,  and  there  is  in  music  no  central  backbone  from  which 

the  various  subjects  radiate,  since  music  is  itself  but  the  sum 

of  them  ;  and  unwise  because  the  lack  of '  musicianship',  which 
is  such  a  drag  on  the  wheel  of  artistic  progress  in  this  country, 
is  directly  fostered  by  our  habit  of  concentrating  exclusively 
on  one  section  of  the  art.  We  can  imagine,  for  instance,  an 
accidental  gathering  of  four  men,  each  of  them  eminent  in  the 
musical  world,  yet  each  skilled  in  such  diverse  directions  that 
real  conversation  between  them  on  music  would  be  more  diffi- 

cult than  on  almost  any  other  subject.  One,  let  us  say,  is 

a  virtuoso  on  the  violoncello,  another  an  expert  voice-trainer, 
the  third  has  an  unrivalled  knowledge  of  the  school  of  Pales- 
trina,  whilst  the  fourth  is  in  the  front  rank  as  a  Wagnerian 
conductor.  It  is  difficult  to  suggest  a  trunk  on  which  to  graft 
these  four  branches. 

Fortunately,  however,  a  considerable  number  of  musicians 
realize  the  folly  and  danger  of  confining  the  attention  within 
too  small  limits.  To  whatever  special  line  we  may  be  driven 
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by  our  natural  gifts  or  our  daily  bread,  a  point  is  soon  reached 
at  which  our  great  need  is  study  off  that  line  if  we  are  to 
fertilize  our  minds  by  enlarging  our  outlook.  And  so  it 
happens  that  some  musicians,  looking  round  for  subjects  of 

secondary  interest,  are  attracted  to  the  study  of  Acoustics — 
the  Science  of  Sound.  Since,  however,  such  musicians  have 

in  most  cases  not  thought  out  for  themselves  the  relation 
between  this  one  aspect  of  music  and  the  whole  art,  the 
succeeding  paragraphs  will  attempt  an  explanation  of  that 
relationship,  while  incidentally  unfolding  the  plan  and  order 
of  arrangement  of  the  subject  which  has  been  adopted  in 
this  book. 

When  a  man  receives  a  blow  the  occurrence  may  be 

described  from  any  one  of  many  points  of  view.  We  might 

ask  a  lawyer  for  a  legal  opinion  on  the  assault,  a  boxing- 
expert  for  a  technical  description  of  the  hit,  a  doctor  for 
an  appreciation  of  the  damage,  a  moralist  for  a  homily  on 

self-control.  But  if  we  ask  a  psychologist  for  a  detailed 
description  of  the  incident  as  it  strikes  him  qua  psychologist, 
he  will  tell  us  that  the  blow  itself  was  a  stimulus,  that  the 

recipient  then  experienced  an  immediate  sensation,  followed 

at  once  (unless  it  was  a  knock-out  blow)  by  the  perception 
of  the  nature  and  cause  of  the  sensation,  and  followed  later  by 

workings  of  the  mind,  which  are  called  concepts,  on  the  facts 
presented. 

When  we  listen  to  music  exactly  the  same  process  occurs. 
Something  acts  as  a  stimulus  to  our  auditory  nerve,  producing 
the  sensation  of  sound :  there  follows  the  perception  of  its 
nature,  and  we  say  to  ourselves  that  it  is  a  clarinet,  or  a  barrel- 
organ,  or  C  sharp ;  and  the  mind  is  immediately  provided  with 
material  for  concepts,  and  we  pass  into  the  realms  of  dis- 

crimination, memory,  association,  and  so  forth.  If  we  look  for 
the  application  of  Acoustics  to  the  above  analysis  we  can  see  at 
once  where  it  is  involved.  The  whole  question  of  the  action 
of  the  stimulus  is  a  matter  for  purely  acoustical  investigation ; 
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the  question  of  sensation  is  partly  acoustical  and  partly  physio- 
logical ;  the  questions  of  perception  and  concepts  are  entirely 

outside  Acoustics  except  in  so  far  as  the  previous  work  of  the 

sense-organ  has  presented  us  with  sensations  dissected  and 
ready  for  the  formation  of  conclusions. 

In  one  important  respect  the  action  of  the  stimulus  in  the 
case  of  Sound  differs  from  the  blow  given  and  received  in 

the  above  example.  For  in  the  case  of  the  blow  the  sensa- 
tion is  produced  by  direct  impact ;  whereas  in  the  case  of 

Sound  the  actual  cause  of  the  sensation  may  be  many  miles 
away.  But  it  is  quite  easy  to  eliminate  this  difference  by 
imagining  a  case  where  two  comrades  stand  together  and  one 
of  them  is  hit  by  a  bullet,  the  other  merely  hearing  the  report 
of  the  rifle.  In  the  case  of  the  man  who  is  hit  we  can  analyse 

the  whole  incident  in  certain  water-tight  compartments.  There 

is  (i)  the  producing-cause  (the  rifle),  involving  a  study  of 
mechanisms  and  explosives ; 

(2)  the  conveyance  of  the  bullet  from  the  rifle  to  the  victim, 

involving  a  study  of  the  trajectory  of  projectiles ; 

(3)  the  impact  of  the  bullet,  as  a  stimulus  producing  sen- 
sation ; 

(4)  the  subsequent  effects,  which  bring  the  realization  of 

disablement,   the    suggestion    of  self-preservation,    and    the 
vision  of  stretchers,  bandages,  and  hospital. 

The  immediate  interest  of  the  wounded  man  would  not,  of 

course,  embrace  any  such  analysis,  and  his  grasp  of  the 

situation  would  be  summed  up  in  the  words  '  IVe  been  hit '. 
Similarly  his  companion's  comment  on  the  incident,  as  far 
as  it  affects  the  question  of  sound,  would  be  the  simple  state- 

ment '  I  heard  the  shot '.  But  the  acoustical  analysis  of  his 
experience  falls  into  four  precisely  parallel  divisions : 

(1)  The  producing  cause  of  the  vibrations — i.e.  the  ex- 
plosion ; 

(2)  The  conveyance  of  those  vibrations  through  the  air  to 
the  auditory  nerve  of  the  recipient ; 



12  PRELIMINARY  CHAPTER 

(3)  The  impact  of  the  vibrations,  producing  the  sensation 
of  sound ; 

(4)  The   subsequent  effects,  which  enable  the  listener   to 
deduce  the  nature  of  the  weapon,  the  range  and  direction 
of  fire,  and  any  other  facts  which  an  expert  may  be  able  to 
determine  from  the  characteristics  of  the  sound  heard. 

Conforming  to  the  above  analysis,  this  book  deals  first  of 
all  with  the  production  of  Sound,  and  then  proceeds  to  inquire 
into  its  three  characteristics  of  Pitch,  Intensity,  and  Quality. 
It  then  deals  with  the  question  of  Temperament,  which  is  the 
artificial  adaptation  of  natural  laws  to  practical  use.  The 
process  of  Transmission  is  then  discussed,  being  purposely 
left  to  this  later  stage,  since  it  is  the  part  of  Acoustics  which 
involves  by  far  the  most  difficult  abstract  conceptions.  The 

last  chapter  of  the  book  deals  with  the  outlines  of  the  physi- 
ology and  anatomy  of  the  Ear,  and  at  this  point  the  subject 

is  abandoned,  since  the  next  step,  which  leads  us  to  the  brain, 
is  the  threshold  of  psychological  and  aesthetical  considerations 
which  lie  outside  the  province  of  Acoustics. 

The  student  is  earnestly  advised  not  to  skip  the  occasional 

chapters  dealing  with  mathematics  (3,  6,  10,  13,  15,  16,  17). 
They  contain  nothing  whatever  which  a  reader  of  average 
intelligence  and  ordinary  arithmetical  knowledge  should  not 
readily  understand ;  and,  unless  they  are  understood,  the  study 
of  Acoustics  becomes  a  mere  committal  to  memory  of  facts, 

many  or  most  of  them  misconceived.  A  grasp  of  the  ele- 
mentary mathematical  basis  on  which  the  subject  rests  leads 

to  an  initiation  into  logical  and  inevitable  processes,  and  an 

unforgettable  apprehension  of  the  principles  upon  which  they 
work. 
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CHAPTER   I 

AXIOMS  AND  DEFINITIONS 

No  one  can  discuss  even  the  most  elementary  question  of 

Acoustics  without  soon  discovering1  the  necessity  of  using1 
technical  terms.  As  in  every  other  branch  of  learning-, 
discovery  and  progress  in  our  knowledge  of  Sound  depend 

on  our  being1  able  to  express  complex  ideas  in  single  words, 
in  the  certain  assurance  that  those  words  convey  to  other 
people  exactly  the  same  meaning  as  they  convey  to  us. 

Some  of  the  words  thus  used  in  Acoustics  are  specialized 

terms  (such  as  '  rarefaction  '  or  '  density  ')  whose  meaning  will 
present  little  difficulty  to  any  student.  An  idea  has  to  be 
grasped  and  delimited,  and  then  labelled  with  its  proper  name. 
But  occasionally  words  are  pressed  into  this  specialized  service 

(such  as  '  elasticity  '  or  '  wave  ')  which  give  great  trouble  to 
students  because,  though  the  words  are  used  by  everybody  in 
ordinary  conversation,  they  are  used  in  a  sense  which  is 
scientifically  inaccurate. 

In  this  chapter  a  short  explanation  will  be  given  of  the 
special  use  of  the  more  common  technical  terms.  But  the 

student  is  warned  that  in  most  cases  the  explanation  is  incom- 
plete, since  a  full  understanding  depends  on  a  logical  grasp 

of  facts  which,  later  on,  are  explained  at  length  in  sequence. 
Sound.  Sound  is  invariably  caused  by  some  kind  of 

motion.  It  is  not  sufficient  to  say  that  sound  is  accompanied 
by  motion,  since  motion  is  the  preliminary  condition  which 

renders  the  existence  of  a  sound  possible,  and  any  particular 
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sound  is,  however  momentarily,  subsequent  to  the  disturbance 
which  causes  it. 

The  motion  of  the  body  causing  the  sound  is  sometimes 

plainly  visible,  as  in  the  case  of  the  lower  strings  of  the 

violoncello.    In  other  cases,  such  as  a  tuning-fork  or  a  tumblej 

struck  gently  with  a  knife,  the  motion  is  practically  invisible- 

to  the  naked  eye. 

Vibration.     When   a  body   moves  continuously   in   one 

direction  we  say  it  is  'travelling1.     But  when  it  moves  a 
— \     "^'certain  distance  in  one  direction  and •*»    \  // 

then  moves  backwards  over  the  ground 

already  covered,  we  say  it  is  oscillat- 
ing to  and  fro.  If,  for  instance,  we 

fix  a  strip  of  springy  metal  in  a  vice 

(as  in  fig.  i)  so  that  it  is  exactly  per- 
pendicular, and  then  pull  the  top  to 

the  point  a  and  let  go,  the  metal  strip 

will,  in  virtue  of  its  springiness, 

oscillate  between  a  and  a'  until  it 
ultimately  comes  to  rest  in  its  original  position. 

The  following  facts  in  connexion  with  the  -above  are  essential  and 
must  be  remembered : 

(1)  the  movement  forward  from  a  to  a'  is  an  OSCILLATION  J ;  so  is 
the  backwards  movement  from  a'  to  a  • 

(2)  the  movement  from  r  to  a,  plus  the  movement  from  a  to  a', 
plus  the  movement  from  a'  to  r,  is  one  VIBRATION  ; 

(3)  the  distance  from  a  to  the  perpendicular   representing  the 
state  of  rest  is  the  AMPLITUDE  of  the  vibration.    This  distance 

FIG.  I 

1  Unfortunately  the  meaning  attached  to  such  words  as  '  vibration '  and 
*  oscillation  '  differs  in  different  countries,  and  also  in  different  writers  in 
the  same  country.  Students  must  not,  in  consequence,  consider  that  the 
definitions  given  here  are  universally  accepted,  and  in  using  the  words 
themselves  should  state  what  meaning  they  adopt.  It  is  very  confusing 

that  such  a  word  as  '  oscillation '  should  mean  one  thing  in  an  English 
text-book  and  something  definitely  different  in  a  French  one.  I  have 
adopted  the  French  meaning,  as  it  seems  to  me  simpler  and  more  logical. 
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is  found  by  drawing  a  line  from  a  at  right  angles  to  the  per- 
pendicular, and  since  the  point  a  is  lower  than  the  point 

r  this  line  will  meet  the  perpendicular  at  a  point  a  little 
below  r. 

In  the  above  experiment  the  distance  aa'  will  gradually 
diminish,  for  two  reasons.  Firstly,  the  air-resistance,  though 
very  slight  in  each  individual  oscillation,  will  exercise  a 
cumuTative  effect  which  by  itself  would  in  time  produce 
a  IjtateTof  rest.  Secondly,  the  elasticity  (vide  infra)  of  the 
metal  tends  to  bring  the  strip  back  to  its  original  position  at 
a ;  but  no  metal  is  perfectly  elastic  and  the  oscillations  conse- 

quently diminish  in  amplitude.  If  we  imagine  fig.  i  turned 
upside  down,  with  a  weight  on  a  string  replacing  the  metal 
tongue  (thus  eliminating  elasticity),  a  state  of  rest  would  be 

induced  by  air-resistance  alone.  If  we  then  eliminated  this 
factor  by  swinging  our  pendulum  in  a  perfect  vacuum  we 
could  produce  oscillations  which  would  continue  indefinitely 
if  the  whole  apparatus  were  free  from  friction  and  the  effects 
of  wear  and  tear. 

Any  body  which  is  vibrating  is  called  a  vibrating  body, 

and  the  vibration-number  of  a  body  is  the  number  of  times 
it  performs  a  complete  vibration  in  a  second.  This  latter 
is  also  sometimes  called  the  frequency  of  the  vibration. 

Periodic.  Movements  are  called  periodic  when  they  are 

repeated  so  as  to  occupy  exactly  equal  periods  of  time. 
If  a  conductor  beats  time  for  60  bars  of  music  which  is 

in  ̂   time  and  is  marked  4—  120,  his  beats  will  be  periodic 
if  they  are  mathematically  exact.  His  baton  will  describe 

60  complete  vibrations  in  the  minute,  and  its  vibration-number 
will  be  i  per  second.  If,  however^  the  passage  included  an 
accelerando  and  ritardando,  the  beating  will  not  be  periodic, 
even  though  by  careful  balancing  the_  final  note  is  reached 

exactly  '  on  time '. 
Medium.  The  vibrations  of  a  vibrating  body  do  not  reach 

a  listener  direct,  but  are  communicated  to  a  medium,  which 
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in  turn  conveys  them  to  the  listener.  This  medium  is  almost 
invariably  the  air,  and  so  far  as  musicians  are  concerned  with 
Acoustics  no  medium  other  than  air  is  of  any  importance. 

But  almost  anything  may  be  the  medium — wood,  water, 
lead,  steel,  gold  and  silver,  &c. — provided  that  elasticity  is 
a  property  of  whatever  is  chosen.  And  in  some  respects  air 

is  actually  inferior  to  certain  other  media.  If  a  tree-trunk  of 
some  length  is  lying  on  the  ground  it  is  easy,  by  applying 
the  ear  to  one  end,  to  hear  quite  distinctly  the  sound  caused 
by  some  one  at  the  other  end  gently  scratching  the  wood  with 

a  knife — a  sound  which  is  quite  inaudible  to  any  one  standing 
up  (i.  e.  relying  on  the  air  for  conveyance)  at  half  the  distance. 
The  experiments  made  with  bells,  &c.,  under  water  may  be 
mentioned  because,  though  unimportant  to  musicians,  the 
results  have  led  to  the  invention  of  apparatus  for  warning 
ships  of  the  presence  of  icebergs  and  for  disclosing  to 
submarines  the  neighbourhood  of  other  craft. 

Velocity.  The  rate  at  which  vibrations  will  travel  from 
the  original  vibrating  body  to  the  ear  of  the  listener  is  called 
the  velocity  of  sound  in  whatever  medium  is  chosen. 

In  air  the  velocity  of  sound,  when  the  temperature  is  at 

freezing-point  (o°  Centigrade  or  32°  Fahrenheit),  is  taken  as 
1,090  feet  per  second. 
The  pace  of  sound  increases  as  the  temperature  rises,  but 

does  not  increase  at  a  uniform  speed.  But  as  the  velocity  at 

80°  Fahrenheit  (an  increase  of  48°  on  freezing-point)  is 
1^140  feet  (an  increase  of  50  feet  per  second  on  1,090),  it  may 
be  taken  as  roughly  true  that  i  foot  per  second  is  to  be 
added  to  the  velocity  of  i  ,090  for  every  degree  of  heat  above 

freezing-point  Fahrenheit. 
In  water  the  velocity  is  nearly  5,000  feet  per  second ;  in 

wood  (along  the  grain)  from  10,000  to  15,000 ;  in  metals,  such 
as  iron  and  steel,  it  reaches  over  16,000. 

Velocity  is  not  altered  by  atmospheric  pressure :  so  long 
as  the  temperature  remains  the  same  the  state  of  the  barometer 
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is  immaterial.  It  is  also  independent  of  the  pitch  and  loudness 

of  the  sound :  the  louder  the  sound  the  farther,  but  not  the 

faster,  it  will  travel. 

Pitch,  Intensity,  and  Quality  are  the  three  determining- 
characteristics  of  every  musical  sound.  That  is  to  say,  when 

these  three  qualities  have  been  ascertained  the  character  of 

any  sound  can  be  finally  fixed. 

High  and  Low,  Sharpness  and  Flatness.  There  is  no 

reason  in  the  world  why,  if  we  strike  two  notes  on  the  piano, 

we  should  say  that  the  right-hand  note  is  higher  than  the 
other.  It  is  no  nearer  the  ceiling,  and  though,  as  the  student 

will  learn  later,  its  vibration-number  happens  to  be  greater, 

on  the  other  hand  its  pipe- length  and  string- length  are  less. 

Yet  it  seems  to  be  universal  to  use  the  words  '  high '  and 

'  low '  in  this  sense.  The  Greeks  used  o£uy  and  /?apt>y,  and 
the  Romans  acer  and  gravis ;  and  it  is  undoubtedly  the  same 

instinct  which  leads  us  to  say,  when  a  note  is  slightly  higher 

or  lower  than  we  wish,  that  it  is  'sharp '  or  '  flat '.  The  student 
should  be  quite  clear  in  his  mind,  however,  that  such  terms, 

though  used  always  with  one  accepted  meaning,  are  pictur- 

esque rather  than  rational. 

Nomenclature  of  Notes.  Everybody  should  be  familiar 

with  the  method  of  naming  notes  so  as  to  convey  their  'octave' 
as  well  as  their  name.  Low  C  (i.e.  bottom  C  on  the  pedal- 

board  of  an  organ  at  8  ft.  pitch)  is  called  C,  -o-  c1 

the  octave  below  C:  or  CC,  and  the  octave  j  "~c 

below  that  (32  ft.  C)  C2  or  CCC.   In  the  other  -»•     c 
direction  tenor  C  is  c,  middle  C  is  c  or  cc,  and  so  on.      Every 

note  in  any  octave  is  named  in  the  same  way  as  the  C  below  it. 

Thus    Rfi=   EB     is  e" ;    I  is  BA  or  BB. J  ^ 

Condensation  and  Rarefaction.  If  we  have  a  tumbler 

full  of  water,  and  then  take  half  the  water  away,  the  result 

is  that  the  tumbler  is  half-full ;  and  the  same  result  would 
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follow  if  the  tumbler  were  air-tight.  That  is  to  say,  the  lower 
half  would  be  full  of  water,  the  upper  half  becoming  a  vacuum, 

since  the  water  would  not  expand.  In  the  case  of  air,  how- 
ever, we  should  get  a  different  result.  For  if  we  withdraw 

half  the  air  from  an  air-tight  chamber,  the  remaining  half 
expands  and  fills  twice  its  normal  space,  and  there  are  no 

empty  'pockets'  in  the  chamber.  When  air  expands  in  this 
manner  into  more,  space  than  it  requires  in  its  normal  state 

we  say  that  it  is  '  rarefied ' ;  when  it  is  compressed  into  lcs% 
space  than  it  normally  requires  we  say  it  is  '  condensed '. 
The  comparative  ease  with  which  air  condenses  and  rare- 

fies is  of  the  utmost  importance  at  a  later  stage  of  the 
subject. 

Water-wave.     This  word  immediately  suggests,  to  the 
\  great  majority  of  people,  something  moving  along  in  a  curly 

j&    sinuous  manner.    The  essential  point  of  all  water-waves,  hovv- 
>ever — and  the  realization  of  this  is  of  cardinal  importance 

,v'   V  when  we  come   to  'associated'  waves — is  that,  though  the 
movements  that  take  place  seem  to  be  in  the  direction  of * 

the  wave,  they  are  all  really  at  right  angles  to  this  direction.1 
If,  for  example,  we  place  a  walking-stick  underneath  the 
table-cloth,  and  move  it  along  the  length  of  the  table,  it  is 
obvious  that  a  wave  passes  down  the  cloth ;  but  all  that  the 
actual  particles  of  cloth  have  done  has  been  to  rise  and  fall 

perpendicularly  on  the  table,  at  right  angles  to  the  direction 
of  the  wave  which  results  from  their  movement.  It  is  quite 

possible,  indeed,  that  a  wave-system  may  be  in  operation 
in  which  the  actual  material  of  the  waves  is  momentarily 
moving  in  a  direction  opposite  to  that  of  the  wave-system. 
The  student  should  from  the  outset  make  himself  familiar 

with  this  idea  that  the  directions  of  wave-motion  and  material- 

motion  are  quite  independent. v  — >/ 

1  When  the  student  makes  acquaintance  with  Weber's  Law  (p.  109)  he 
will  slightly  modify  this  view,  but  at  the  moment  this  qualification  is  not 
of  importance. 
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Volume,  Mass,  and  Density.    The  vohiingjot  a  substance 
means  the  cubic  space  which  the  substance  occupies. 

'The  mass  means  the  quantity  of  matter,  and  is  propor- 
tional to  the  weight. 

The  density  of  a  substance  is  the  relationship  of  the  mass 
to  the  volume.     This  is  usually  expressed  by  the  formula 

This  formula  will  become  clear  to  any  one  who  will  apply  it  to 
a  simple  concrete  example. 

If  we  find  that  10  cubic  inches  of  a  certain,  substance  weighs  x 

pounds,  then  by  taking  a  pound  as-  our  unit  of  weight  and  a  cubic 
inch  as  our  unit  of  volume  we  can  find  the  density  of  that  substance  : 

M       x\ 

£>  =  —=—• V       10 

If  we  halve  the  volume  we  also,  halve  the  weight,  but  do  not  affect 
the  density,  for  still 

M      ±x       x 
D—        —  a__  =  —  • 

V         5,       10 

If  we  compress  the  substance  into  half  its  normal  space  then  we 
double  the  density,  for  it  still  weighs  x  pounds,  and  so 

If  we  could  so  treat  the  substance  that  it  lost  half'i^s,  weight  without 
decreasing  in  size,  then  we  halve  the  density,  for 

D=  —  =  i^-j^. V       10       20 

Thus  the  normal  density  of  any  substance  is  found  by  fixing  on 
some  definite  unit  of  weight  and  unit  of  volume  (or  size),  and 
comparing  the  two  in  the  form  of  the  fraction 

units  of  weight  4 
units  of  volume 

Any  increase  of  weight  while  the  volume  remains  stationary 

obviously  increases  the  value  of  this  fraction  —  i.  e.  increases  the 
density  of  the  substance  ;  any  increase  of  volume  while  the  weight 
remains  stationary  obviously  decreases  the  value. 

B   2 
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Elasticity.  Almost  every  one,  except  those  with  scientific 
knowledge,  connects  the  idea  of  elasticity  with  the  ease  with 
which  a  substance  allows  itself  to  be  stretched.  The  true 

meaning1  of  the  word  is  quite  different.  A  body  possesses 
elasticity  in  proportion  as  it  demands  force  to  change  its 

original  form,  and  insists  on'  recovering  its  original  form  after 
it  has  been  disturbed.  It  is  not  easy  at  first  to  realize  the 
great  elasticity  of  glass,  which  will  almost  instantly  fly  back 
to  its  original  position  when  it  has  been  bent ;  whereas  many 
substances  we  should  name  at  once  as  obviously  elastic  possess 
in  reality  but  little  elasticity,  as  they  are  easy  to  bend  and 
sluggish  in  recovering  their  original  forms. 
Tension.  If  we  hang  a  weight  on  to  a  string  the  tension 

of  the  string  is  at  all  points  exactly  equal  to  the  weight ;  and 

the  same  is  true  if  we  apply  a  stretching-force  to  the  string 

of  a  musical  instrument.  Hooke's  Law  (ut  tensio  sic  vis— 
that  the  force  is  as  the  tension)  established  the  fact  that-the— 
increase  in  length  is  proportional  to  the  force  applied  at 

the~encls7  Consequently  if  an  extra  force  six  pounds  is 
required  to  make  a  violin- string  stretch  one  more  inch,  then 
a  force  of  zx  pounds  will  stretch  it  two  inches  in  all;  and  the 

tension  at  every  point  of  the  string  is  equal  to  the  total  force 

applied. 

N.B. — So  many  of  the  technical  terms  of  Acoustics  have  synonyms, 

and  the  student  is  so  apt  to  be  -confused  by  a  term  with  which  he  is 
not  familiar,  that  it  has  been  thought  well,  when  two  terms  mean 

the  same  thing,  to  use  them  indiscriminately  in  this  book.  Thus 

the  word  'frequency*  is  used  as  often  as  'vibration-number';  and 

'pure  sound'  and  'simple  tone'  are  another  pair;  also  'timbre'  and 

'quality',  'wave'  and  'curve',  -'intensity'  and  'loudness',  and,  in 

the  latter  half  of  the  book,  '  fundamental  note '  and  '  prime  tone '. 



CHAPTER   II 

THE  PRODUCTION  OF  SOUND 

ALL  language  aims  at  establishing  a  general  understanding 
between  people,  and  in  consequence  every  one  acquiesces  in 
expressions  which  are  not  scientifically  accurate,  so  long  as 
they  serve  the  purpose  of  facilitating  the  exchange  of  ideas. 

We  have  in  this  way  grown  into  the  habit-  of  using  the  word 

'sound'  in  a  sense  quite  divorced  from  its  scientific  meaning, 
allowing  our  minds  to  jump  proleptically  from  a  means  to  an 

end.  If  we  say,  for  example,  that  '  a  bugle  is  sounding ',  we 
make  a  remark  which  is  unmistakably  intelligible  to  every  one  ; 
but  it  is  nevertheless,  from  a  scientific  standpoint,  entirely 
inaccurate.  For  the  bugle  merely  vibrates,  and  the  vibrations 
which  it  communicates  to  the  air  are  not  translated  into  sound 

until  they  come  into  contact  with  some  auditory  apparatus. 
An  ear  of  wheat  can  produce  flour  which  man  may  turn  into 
bread,  and  the  poet,  holding  the  ear  in  his  hand,  might 
apostrophize  it  as  bread ;  but  it  obviously  has  not  yet  become 
bread,  and  possibly  it  never  will.  Similarly  the  bugle  can 

produce  vibrations  in  the  air  which  a  listener's  ears  may  turn 
into  sound,  though  possibly  this  transformation  will  never 

take  place :  as  would  be  the  case  were  a  stone-deaf  bugler 
to  blow  his  instrument  out  of  the  hearing  of  the  rest  of  the 

wrorld.  Again,  we  should  say  in  conversation  that  if  you 

shake  a  bell  it '  sounds ' ;  but  a  simple  experiment  will  show 
that  this  is  not  necessarily  the  case.  If  you  place  a  bell  under 
a  glass  jar,  and  then  set  it  in  motion,  it  is  true  that  in  your 
head  the  vibrations  coming  from  the  bell  through  the  air  are 

turned  into  sound ;  but  if  you  exhaust  the  air  in  the  jar,  until 
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the  bell  is  swinging  in  a  vacuum,  the  result  is  silence,  because 
the  vibrations  have  no  means  of  reaching  your  ear.  Yet  the 
bell  is  performing  precisely  the  same  part  as  before. 

The  conception  of  sound  embodied  in  the  above  paragraph 
is  so  essential  to  a  right  understanding  of  all  acoustical 
phenomena  that  it  is  worth  while  to  dwell  on  its  bearings 
a  little  longer. 

Supposing  that  you  see  a  big  gun  fired  some  miles  out 
at  sea.  First  a  puff  of  smoke  will  appear,  and  some  seconds 
later  you  will  hear  the  report  of  the  explosion.  At  the 
moment  of  hearing  this  sound,  ask  yourself  where  it  is.  It 
cannot  be  at  the  mouth  of  the  gun,  for  if  you  could  telephone 
to  the  gunner  he  would  say  that  in  the  neighbourhood  of  the 

gun  there  had  been  peace  and  quiet  for  some*  seconds.  It 
clearly  cannot  be  at  some  chance  point  between  the  gun  and 
you.  Consequently  the  sound  must  be  in  your  head.  And 
though  other  similar  sounds  will  be  in  the  heads  of  all  the 
other  listeners  yet,  if  we  assume  for  the  moment  that  the  gun 
was  fired  by  electrical  contact  on  a  desert  island  with  yourself 
as  the  only  soul  within  range  of  hearing,  then  we  can  say  that 
the  only  sound  for  which  the  gun  was  responsible  was  that  one 
particular  sound  in  your  head. 

A  commoner  and  perhaps  more  striking  illustration  is  the  following. 

If  you  go  alone  to  the  organ  in  an  empty  church,  pull  out  all  the 

stops,  fix  down  all  the  notes,  and  turn  on  the  wind,  the  result  will 
be  a  noise  best  left  to  the  imagination.  Then  go  and  stand  outside 

the  church,  leaving  it  empty  as  you  found  it.  You  will  still  hear  the 

organ,  but  in  the  church  itself  there  is  perfect  silence.  The  organ- 
pipes  are  vibrating  and  are  doing  nothing  else  ;  the  air  is  passing  on 

those  vibrations  to  the  nearest  ear,  and  is  doing  nothing  else ;  and 
the  first  sound  in  connexion  with  the  whole  affair  arises  at  the 

moment  when,  and  the  place  where,  the  vibrations  come  in  contact 

with  a  living  apparatus  designed  to  receive  and  translate  them. 

When  a  body  is  vibrating  it  is  not  always,  or  even  generally, 
possible  to  see  the  vibrations  with  the  naked  eye.  In  some 
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cases  —  stretched  strings,  for  example  —  the  movement  is  ob- 
vious ;  in  others,  such  as  tuning-forks,  it  is  invisible  in  small- 

sized  forks  though  noticeable  in  large  ones.  But  even  in  the 
case  of  small  forks  the  existence  of  rapid  movement  is  quickly 
established  if,  after  striking  the  instrument  on  something  solid, 

we  apply  it  to  our  tongue  or  lips.  When  we  accidentally 
strike  a  tumbler  during  a  meal  we  show,  by  placing  a  finger 
on  it,  that  we  know  the  sound  will  cease  if  the  glass  is  reduced 

to  a  state  of  rest.  If,  again,  we  draw  a  sound  from  a  finger- 
bowl  half-full  of  water,  by  rubbing  a  moistened  finger  gently 
round  the  rim,  the  vibration  of  the  glass  is  established  by  the 
visible  excitement  of  the  surface  of  the  water.  It  is,  however, 

impossible  by  the  unaided  examination  of  the  eye  to  form  any 
reliable  conclusions  as  to  the  nature  of  vibrations,  and  various 

methods  have  been  invented  for  bringing  them  more  under 
observation.  Two  of  these  methods  will  be  described  now. 

I.   The  graphic  method.     A  fine  point  is  attached  ;to  one  prong  of 

a  tuning-fork,  and  a  strip  of  glass  is  prepared  by  blackening  it  in 
a  flame.     The  fork  is  set  in 

motion    and    the    attached  «  —  —  r=r^= 

point  applied  to  the  strip  of     \   v_^x^\  -  \ 
glass,  which  is  then  moved       \  <  ««       Pa&iqf  glass  _  \ 
along    at    a   uniform    pace.  Fi<j_  2. 
The  point  traces  a  curve  on 

the  glass  by  scratching  away  the  black  as  the.  prong  moves  to  and 
fro.  [In  the  illustration  the  curve  is  shown,  for  the  sake  of  clearness, 

as  black  on  white  instead  of  white  on  black.] 
II.  Koenigs  flames.  Sometimes  called  the 

manometnc  name.  A  is  an  ordinary  gas-jet 
supplied  with  gas  through  the  tube  at  B. 
This  gas  enters  the  oval  enclosure  and  can 

only  escape  at  A,  since  it  is  prevented  from 

reaching  c  (the  only  other  exit)  by  the 
membranous  partition  at  DE.  Now  a  note 

sung  near  the  apparatus  will  make  the  '  •* 
membrane  vibrate  in  sympathy  with  it  ;   and 
each  forward  or  backward  movement  of  the  membrane  will  make 

B r 
E 
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the  flame  rise  or  fall  as  it  presses  the  gas  towards  the  flame  or  pulls 

it  in  the  opposite  direction.  This  up-and-down  motion  of  the  flame 
being  too  rapid  to  see,  it  is  reflected  in  a  revolving  mirror,  which 

makes  it  easy  to  obtain  certain  conclusions.  The  most  important 

of  these  is  the  fact  that,  whereas  a  noise  will  produce  in  the  mirror 

a  series  of  jagged  flames  of  all  sizes  and  shapes,  a  musical  note 

produces  a  series  characterized  by  symmetry  and  smoothness  of 
outline. 

It  is  necessary  to  establish  on  a  scientific  basis  the  difference 
between  a  musical  sound  and  a  noise,  and  a  line  of  demarca- 

tion has  been  drawn  by  scientists  in  accordance  with  the 
conclusions  arrived  at  from  physical  experiments  such  as 
the  two  just  described.  When  the  vibrations  of  a  body 
recur  at  exactly  regular  intervals  they  are  said  to  be  periodic, 
and  such  periodic  vibration  will  produce  a  musical  sound  ; 
whereas  irregular  unperiodic  vibration  will  invariably  result 
in  noise.  As  will  be  found  later  on,  such  periodic  vibration 
results  in  definiteness  of  pitch,  and  so  a  musical  sound  is 
considered,  scientifically,  as  one  that  has  an  ascertainable 

pitch,  and  the  question  of  pleasantness  of  quality  is  ignored. 
The  rustling  of  leaves,  for  instance,  might  be  described  by 
a  poet  as  musical,  but  to  the  scientist  it  is  to  be  classed  with 
noises. 

There  are,  nevertheless,  some  doubtful  cases.  A  cork 

pulled  out  of  a  bottle,  or  a  pencil  pulled  sharply  out  of  a 
case,  frequently  give  notes  of  clear  pitch.  On  the  other  hand 
the  cymbals  and  triangle,  both  used  for  musical  purposes, 

have  no  pitch  at  all ;  the  triangle,  indeed,  possessing  the 

baffling  property  of  apparently  sounding  in  tune  with  what- 
ever note  is  being  played  with  it.  It  will  be  well,  however, 

to  accept  the  scientific  division,  since  it  is  meant  to  estab- 
lish a  working  classification  and  not  to  enunciate  an 

inexorable  law. 

A  body  vibrating  periodically  at  a  continuous  and  uniform 

rate  will  always  (as  experiment  proves)  produce  sounds  of 
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the  same  pitch ;  and  any  other  body  made  to  vibrate  at 
exactly  the  same  rate  will  produce  a  sound  in  unison  with 
the  first.  Hence  it  is  established  that  every  note  has  an  exact 

.  number  of  vibrations  per  second  required  to  produce  it,  and, 
when  the  right  number  for  a  given  note  has  been  ascertained, 
any  body  made  to  vibrate  at  that  rate  will  inevitably  produce 
the  note  in  question.  The  number  of  vibrations  required  to 

produce  a  note  is  called  the  note's  vibration-number  or 
frequency,  and  we  may  describe  the  pitch  of  a  note  absolutely, 

by  giving  its  vibration- number,  or  relatively  by  comparing  it 
(as  fifth,  octave,  &c.)  with  another  note. 

From  the  earliest  ages  man  has  tried  to  increase  the  number 
of  ways  at  his  disposal  for  producing  periodic  vibrations, 
and  to  enlarge  the  number  of  sounds  obtainable  by  any  one 
method.  At  present  there  are  six  common  ways  of  generating 
sounds  for  musical  purposes : 

(1)  By  the  vibrations  of  columns  of  air  (e.g.  the  penny- 
whistle,  which  is  the  type  of  all  flue-pipes). 

(2)  By  the  vibrations  of  stretched  strings. 
(3)  By  the  vibrations  of  reeds. 
(4)  By  the  vibrations  of  elastic  membranes  acted  on  by  air 

(e.g.  the  human  voice). 
(5)  By  the  vibrations  of  elastic  membranes   acted  on  by 

solids  (e.  g.  the  drum). 

(6)  By  the  vibrations  of  elastic  solid  bodies  (e.g.  bells). 



PART  II.     PITCH 

CHAPTER  III x^_X 

ON  PENDULUM-MOTION 

IF  we  attach  a  weight  to  a  cord  which  is  fixed  at  t 
encl,  and  then  set  the  weight  in  motion  by  making  it  swing 
backwards  and  forwards  in  a  plane  (i.e.  without  circular 
motion),  we  have  an  example  of  a  simple  pendulum  in  action. 

The  weight  is  called  the  'bob',  and  the  path  of  the  bob  through 
the  air,  which  is  clearly  a  portion  of  the  circumference  of  the 
circle  of  which  the  fixed  point  is  the  centre,  is  called  the  arc 
of  vibration. 

The  actual  movement  of  a  pendulum  is  so  simple  that  the 

reader  will  have  no  difficulty  in  imagining  one  in  motion. 
A  garden  swing,  if  we  assume  that  the  two  ropes  keep  exactly 
parallel,  and  so  traverse  precisely  similar  paths,  will  furnish 

an  example.  We  take  hold  of  the  bob  (i.  e.  the  seat  and  the 
person  sitting  on  it),  force  it  away  from  the  perpendicular 
position  it  assumes  when  at  rest,  and  then  let  go  our  hold. 
If  no  further  force  is  applied,  either  by  ourselves  or  the 

passenger,  the  pendulum  will  oscillate  backwards  and  for- 

wards, describing  an  arc  which  grows  less  with  each  oscilla-^ 
don  until  ultimately  the  original  po§itiojQjof_rest  is  gained. 

The  one  essential  feature  of  these  oscillations,  which  is 

called  the  Law  of  Pendulum-motion,  is  that  so  long  as  the 
arc  of  vibration  is  small  the  oscillations  are  isochronous^  that 

is,  they  occupy  exactly  the  same  time.  Between  the  full 
swing  (which  is  just  short  of  a  semicircle)  and  the  smallest 

(which  is  the  minute  fraction  of  an  inch  immediately  pre- 
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ceding  absolute  stoppage)  there  is  a  discrepancy  in  time  of 

something  like  20  per  cent.  ;  but  so  long  as  the  arc  remains 

small  —  and  for  musical  purposes  (cf.  the  tuning-fork)  only 

small  arcs  are  necessary  —  oscillations  are  isochronous  and 
are  not  affected  in  time  by  the  diminishing__amplitude  of 

the  arc.  We  can  alter  the  pace  of  a  pendulum  by  lengthen- 
ing or  shortening  the  cord,  but  when  once  the  length  is  fixed 

any  given  pendulum  will  beat  time  with  mathematical  exact- 
ness, provided  that  it  is  started  on  its  swing  with  a  fairly 

small  arc. 

Ever  since  the  law  of  isochronous  motion  was  discovered 

by  Galileo  experiments  have  been  made  with  a  view  to  gaining 

further  insight  into  the  nature  of  pendulum-motion.  One 

of  these  experiments,  of  the  very  greatest  importance  in 

Acoustics,  is  the  following. 

A  pendulum  is  provided  with  a  bob  which  is  a  hollow  sphere 

filled  with  a  fine  powder;  and  as  the  pendulum  swings  the 

powder  escapes  (like  the  sand  in  the  top  half  of  an  hour-glass) 
through  a  hole  in  the  bob.  If 

a  level  board,  large  enough  to  ̂  

cover  the  swing  of  the  bob,  *g 
is  placed  underneath  the  pen-    £  Path.  of  board 
dulum,  it  will  obviously  receive 

the  powder  in  a  straight  line. 

But  if  the  board  is  moved  Along 

at  a  uniform  pace  in  a  direc- 

tion  at  right  angles  to  the  movement  of  the  pendulum,  then 
the  sand  will  be  found  to  have  traced  a  curve  on  the  board. 

The  curve  thus  formed  (fig.  4)  represents  to  the  eye  the  move- 
ment in  a  simple  pendular  vibration,  and  it  is  found,  on 

examination,  to  be  of  the  same  type  as  the  curve  traced  on 

smoked  glass  by  a  tuning-fork  (fig.  2,  p.  23).  It  is  not  neces- 
sary at  this  point  to  dwell  on  the  deductions  to  be  drawn  from 

this  coincidence,  beyond  saying  that  they  are  of  such  impor- 
tance as  to  make  it  imperative  for  the  student  to  understand 

1 
\J\J\-/\S 
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the  nature  of  pendular  vibration.  And  the  cardinal  feature 
of  the  whole  process  is  the  fact,  as  stated  above,  that  though 
the  curve  described  by  the  bob  grows  ever  less  and  less,  yet 
the  time  occupied  by  the  bob  over  each  curve,  great  or  small, 
is  exactly  the  same. 

Many  musicians  have  proved  for  themselves  the  truth  of 
this  law  by  constructing  simple  and  inexpensive  metronomes. 
A  small  weight  attached  to  a  tape  and  hung  on  a  nail  in  the 
wall  will,  when  set  in  motion,  from  its  first  swing  (which 

must  not  be  of  too  large  a  sweep)  to  its  later  scarcely  per- 
ceptible movements,  keep  absolutely  strict  time.  The  fixed 

laws  for  altering  the  pace  of  such  a  metronome,  by  changing 
the  length  of  tape,  are  quite  simple,  but  as  they  involve 
inverse  variation  and  square  root  they  will  be  explained  later 
on  (Chap.  VI,  p.  39]. 

It  may  be  desirable  to  go  a  little  beyond  the  above  superficial 

account  of  pendulum-motion,  for  the  benefit  of 'those  readers  who 
wish  to  have  a  more  scientific  conception  of  the  process. 

When  the  bob  is  held  away  from  the  position  of  rest  and  set  free 

it  falls,  from  rest,  with  increasing  speed  towards  its  position  of  rest. 

E.g.  in  fig.  5  if  we  hold  the  bob  at  c 

and  then  set  it  free,  it  falls  with  increasing 

speed  towards  B.  It  then  swings  uphill 

with  diminishing  speed  to  A,  where  it 

comes  to  momentary  rest ;  and  proceeds 

to  do  the  same  journey  in  an  opposite 
direction.  There  are  two  forces  to  be 

considered,  which  affect  the  pendulum  : 

(1)  G&i3lito>+  which    causes    the    movement   from  c   to  B;    the 
momentum  thus  acquired  would  (in  the  absence  of  other 

forces)  work  against  gravity  and  take  the  bob  to  a  point  A 
exactly  as  far  from  B  as  c  is. 

(2)  Friction,  of  various  kinds  (including  air-resistance),  which  is 
the  factor  that  causes  the  gradual  shortening  of  the  arc  and 
the  ultimate  state  of  rest  of  the  bob. 

Hence  the  distance  of  A  from  B  is  a  little  less  than  that  of  c ;  and 

the  bob  will  swing  back  to  a  point  near  c,  but  slightly  nearer  to  B 
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than  A  is.  If  a  pendulum  could  be  constructed  free  from  any  kind 
of  friction,  and  were  set  swinging  in  a  vacuum,  it  would  go  on  for 
ever. 

The  layman  is  apt  to  look  on  '  energy '  as  necessarily 
implying  motion  ;  but  it  is  really  of  two  kinds : 

(1)  Potential  g/ggrgyjthat  is,  power  to  do  work  by  reason 

of  position — e.  g.  a  book  lying-  on  a  table. 
(2)  Kinetic  energy  :  that  is,  power  to  do  work  by  reason  of 

motion — e.  g.  a  book  falling  on  to  the  floor. 
In  pendulum-motion  the  movement  from  C  to  B  (fig.  5) 

involves  a  gradual  change  from  potential  to  kinetic  energy 
(which  is  complete  at  B) ;  from  B  to  A  a  reverse  gradual 
change  from  kinetic  to  potential  (which  is  complete  at  A). 

Although  the  isochronism  of  pendulum-motion  is  the 
essential  point  affecting  Acoustics,  and  the  understanding  of 
it  the  whole  object  of  this  chapter,  it  should  be  stated,  in  the 
interests  of  accuracy,  that  the  cycloidal  pendulum  is  the  only 
one  which  is  perfectly  isochronous.  The  error,  however,  in 
the  ordinary  pendulum  is  not  great  where  the  difference  in 

arc- lengths  is  not  considerable,  and  the  musical  student  need 
not  modify  his  conception  unless  he  intends  to  penetrate  fairly 

deeply  into  the  mathematical  and  physical  basis  of  the  subject. 



CHAPTER  IV 

ABSOLUTE  PITCH 

WE  have  now  three  facts  at  our  disposal  on  which  we  can 
build  our  ideas  of  pitch  : 

(1)  A^teadyjate_of  vibration  results  in^a-note  of  steady 
pitch. 

(2)  Pendulum-motion,    within     the     limits    necessary    for 
acoustical  purposes,  is  isochronous  or  periodic. 

(3)  The  vibrations  of  a  tuning-fork  are  of  a  pendular  nature. 

FEB.  6 FIG.  7 

A  glance  back  at  fig.  2  (p.  23)  will  recall  the  fact  that 

a  vibrating  tuning-fork  can  be  made  to  trace  its  own  curve, 
which  is  like  that  in  fig.  6.  The  portion  of  the  curve  enclosed 
in  the  oblong  of  dotted  lines  is  that  traced  by  the  needle 
affixed  to  the  prong  during  one  complete  vibration.  The 
curve  begins  at  the  point  the  needle  would  occupy  when  at 
rest,  moves  upwards  to  the  full  extent  of  its  swing,  downwards 
to  the  full  extent  in  the  opposite  direction,  and  upwards 
again  to  its  point  of  rest. 

Examining  such  a  section  in  detail  (fig.  7),  we  can  establish 
various  facts  about  the  vibration  of  the  prong  which  traced  it. 

(1)  abode  is  the  curve  representing  one  complete  vibration. 
(2)  abc,  cde  are   curves  exactly  similar,  but   on  different 

sides  of  ae. 
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(3)  ace  is  the  length  of  the  vibration-curve.1 
(4)  abc  is  called  the  crest,  cde  the  trough  of  the  curve. 

(5)  bb'  or  dd'  (which  are  equal)  give  the  amplitude  of  the 
crest  and  trough. 

Now  a  very  little  thought  applied  to  the  experiment  in 
fig.  2  (p.  23)  will  make  it  clear  that,  as  the  vibrating  fork 
approaches  nearer  and  nearer  to  its  point  of  rest,  so  will  the 
curve  traced  on  the  glass  approach  nearer  and  nearer  to  a 
straight  line.  The  same  fork 
which,  in  the  full  vibration  fol- 

lowing a  blow,  will  trace  the 
curve  in  fig.  7,  will  some  seconds 

later,  when  the  initial  impetus  FIG.  o 
has  weakened,  produce  the  curve  of  fig.  8.  And  the  cardinal 
fact  which  a  comparison  of  figs.  7  and  8  reveals  is  that,  though 
the  amplitude  of  the  curve  has  changed,  the  length  remains 
constant.  This  is  the  fact  which  we  learn  from  the  application 

of  the  law  of  pendulum-motion  to  the  vibrations  of  a  tuning- 
fork  :  that  if  the  smoked  glass  be  drawn  across  the  path  of  the 
attached  needle  at  a  uniform  pace,  then_no  matter  how  large 

ot—  small  the  .amplitude  _r>£  the 
traced  may  be,  it  will    be    found    by 
measurement  that   the   length   of  €aeh 
successive  wave  remains  constant. 

The  same  treatment  may  be  applied 
to  the  experiment  with  a  strip  or  tongue 
of  metal  fixed  in  a  vice  (fig.  i,  p.  14). 

In  fig.  9  the  perpendicular  line  repre- 
sents the  tongue  of  metal,  fixed  in  a  vice  at  V.  It  is  forced 

from  its  point  of  rest  at  r  to  the  point  a,  set  free,  and  swings 

1  It  may  well  be  noticed  here  that  there  is  a  definite  relationship  between 
this  length  and  the  rate  of  vibration.  If,  for  example,  the  tuning-fork 
whose  prong  traced  the  curve  of  fig.  6  had  vibrated  twice  as  fast,  then 

there  would  have  been  twice  as  many  vibration-curves  on  any  given 
length  of  the  smoked  glass  :  i.  e.  each  vibration-curve  would  have  been 
half  as  long. 
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across  through  r  to  a.  The  amplitude  of  vibration  is  half  the 

distance  ad ',  and  it  is  clear  that,  as  the  tongue  gets  more  and 
more  tired  and  nearer  to  its  state  of  rest,  so  the  amplitude 
gets  smaller  and  smaller.  But  the  vibrations  remain  periodic, 
each  taking  the  same  time  independently  of  the  changes  of 
amplitude. 

If  we  increase  the  rate  of  vibration  of  a  vibrating  body  we 
find  that  the  pitch  rises ;  if  we  decrease  the  rate  the  pitch  falls. 
And  it  is  an  established  fact  that  pitch  depends  on  nothing 
else  than  this  rate  of  vibration.  Hence,  of  two  notes,  the  one 

that  is  higher  in  pitch  has  inevitably  the  higher  vibration- 
number  ;  and  the  vibration -number  of  a  note  means  always 
the  number  of  vibrations  per  second  that  will  produce  the 
note.  The  fraction  of  a  second  occupied  by  otre  vibration 
is  called  \\s>period\  and  if  we  know  either  the  period  of  one 
vibration  or  the  number  of  vibrations  in  a  second,  we  can 

find  the  unknown  from  the  known  by  means  of  the  simple 
formulae 

i 
7 

where  Z'is  the  time  of  a  period  and  N  the  number  of  vibrations 
per  second. 

It  is  possible  to  test,  by  mechanical  means,  the  limitations 
of  audibility  in  a  person ;  and  such  tests  reveal  curious 

divergences  between  individuals  in  the  power  both  of  recog- 
nizing pitch  and  of  hearing  extreme  sounds  at  all.  Incidentally, 

it  is  not  so  widely  recognized  as  it  should  be  that  these  two 
faculties  are  quite  distinct,  bearing  to  each  other  a  relationship 
analogous  to  that  between  the  power  of  sight  and  the  power 
of  distinguishing  colour.  If  we  watch  the  departure  of  a  ship 
with  red  funnels,  the  colour  will  cease  to  be  distinguishable 
long  before  the  funnels  become  invisible ;  and  if  we  listen  to 
a  chromatic  scale  which  goes  on  up  or  down  without  stopping 
we  soon  reach  a  point  where  pitch  is  unrecognizable,  though 
for  some  time  we  continue  to  hear  squeaks  or  grunts. 
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The  Galton  whistle  is  an  instrument  invented  for  testing 
in  the  region  of  high  sounds.  By  shortening  the  pipe  (and 

in  consequence  increasing-  the  rate  of  vibration)  it  can  be  made 
to  produce  a  sound  which  rises  continuously  higher.  At  a 
certain  point  a  listener  will  fail  to  hear  anything  at  all,  and 
will  claim  that  the  instrument  is  silent.  But  the  whistle  is 

really  producing  its  vibrations  just  as  before,  only  so  rapidly 
as  to  be  useless  to  the  ear  of  the  particular  listener ;  whereas 
another  individual  might  still  find  the  sound  within  range. 

There  is  a  curious  difference  in  the  feeling  we  experience 

when  the  silence-point  is  reached  at  the  low  end  of  the  scale. 
At  the_higji  end,  when  a  number  of  listeners  all  jagree_  that 
there  is  silence,  there  is  nothing  further  to  be  registered. 
the  low  end,  however,  we  reach  our  deepest  note,  and  then 
the  sound  disintegrates,  not  into  silence,  but  into  a  system 
of  throbs.  Just  as  in  a  cinematograph,  when  the  pictures  are 
presented  at  too  slow  a  pace,  the  eye  fails  .to  produce  the 

illusion  of  continuity,  so  the  ear,  failing  to  connect  the  too- 
slow  vibrations  into  a  continuous  sound,  registers  them  only 
as  a  series  of  disjunct  sensations. 

It  is  impossible  to  give  any  very  definite  limits  to  the  power 
of  the  human  ear  to  recognize  either  pitch  or  sound,  since,  as 
has  been  stated,  this  power  varies  considerably  in  individual 
cases.  But  as  a  general  rule  it  may  be  said  that  no  note  whose 

vibration -number  is  lower  than  3O_  or  higher  than  gSrooe  is 

audible,  and  that  pitch  cannot  be  recognized  unless  the  vibra- 
tion-number falls  between  30  and  4,000. 



CHAPTER  V 

THE  MEASUREMENT  OF  PITCH 

As  soon  as  the  elementary  facts  of  Acoustics  were  dis- 
covered— we  might  almost  say  as  soon  as  they  were  suspected 

— men  began  to  make  use  of  them,  as  is  the  custom  of  human 
beings,  in  two  ways.  Men  with  a  practical  turn  of  mind  set 
to  work  synthetically  to  construct  instruments  which  would 
produce  vibrations  of  the  periodic  kind,  and  in  course  of  time 
found  out  the  six  methods  tabulated  on  p.  25.  Those  men, 
however,  whose  minds  were  of  an  inquiring  and  scientific 
bent  wished  rather  to  analyse  and  group  the  facts,  and  thereby 
to  penetrate  farther  into  the  unknown.  Consequently  their 
first  object  was  to  devise  various  ways  of  bringing  under 
observation  the  vibrations  which  they  knew  to  be  too  rapid 

and  too  minute  for  the  unassisted  senses  to  grasp.  The 
methods  thus  invented  for  the  measurement  of  pitch,  though 
at  first  necessarily  rather  crude, Tiave  lib w  reached  a  state  of 

great  ingenuity  and  perfection,  and  may  be  grouped  under 
four  headings : 

(1)  mechanical, 

(2)  optical, 
(3)  electrical, 
(4)  photographic. 

5  ̂ uW/G' 
Mechanical.     The  two  chief  methods  are  (a]  the  toothed 

wheel  and  (6)  thg-sifen. 

(a)  Sayart's  toothed  (or  ratchet)  wheel  consists  of  a  circular  disk 
of  metal  with  equidistant  teeth  cut  into  the  circumference.     The 
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disk  is  fixed  into  an  apparatus  which  will  keep  it  revolving  at  any 
pace  desired,  and  this  pace  can  be  kept  perfectly  uniform  and  can 
also  be  exactly  ascertained.  A  thin  strip  of  metal  (or  even  card- 
bbard)  is  fixed  so  as  to  touch  the  teeth  of  the  wheel  as  it  revolves ; 
and  the  elasticity  of  the  strip 
must  be  such  that  its  tendency 
to  recover  its  position  will  result 
in  each  separate  tooth  striking 

it  in  turn.  Each  up-and-down 
motion  of  the  strip  will  consti- 

tute one  vibration,  which  will  be 
.  communicated  to  the  air ;  and  by 
changing  the  speed  of  revolution 

a  note  of  the  desired  pitch  can  be  secured.  The  vibration-number 
of  this  note  is  then  found  by  multiplying  the  number  of  teeth  in  the 
wheel  by  the  number  of  revolutions  per  second.  Thus,  if  there  are 
100  teeth  in  the  wheel  and  it  has  revolved  exactly  twice  in  a  second, 
it  is  clear  that  the  strip  has  been  hit  200  times  and  the  resulting  note 
has  a  frequency  of  200. 

For  the  sake  of  greater  accuracy  this  calculation  is  generally  made 
by  taking  the  number  of  revolutions  per  minute^  and  dividing  the 
result  by  60.  Thus  if  jT=  the  number  of  teeth,  and  R  —  the 
number  of  revolutions  per  minute,  we  can  find  the  vibration-number 

of  a  note  of  any  pitch  from  the  formula  : 

60 

(fi)  The  siren  is  an  instrument  of  exactly  the  same  nature  as  the 
toothed  wheel,  with  the  one  difference  that  the  vibrations  are  caused 

directly  in  the  air  instead  of  being  communi- 
cated to  the  air  by  the  motion  of  an  elastic 

body. 

j\  disk  is  taken  as  before,  but  instead  of 
cutting/teeth  on  its  circumference  we  pierce 
a  series  of  little  circular  holes  in  it,  all  the 

holes  being  equal  in  size,  equidistant  from 
each  other,  and  all  at  the  same  distance  from 
the  centre.  The  disk  is  placed  in  the  same 

apparatus  and  made  to  revolve.  We  then  blow  through  a  tube  held 
steadily  in  position  so  that  the  column  of  air  blown  through  it  would 

C  2 

FIG.  II 
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pass  through  one  of  the  holes  when  the  disk  is  at  rest.  As  soon  as 

the  revolution  begins  this  column  of  air  is  cut  up  into  '  puffs ',  as  it 
is  alternately  allowed  to  pass  through  a  hole  and  then  is  cut  off  until 

the  next  hole  appears  opposite  to  the  end  of  the  blow-pipe.  Each 
puff  creates  a  vibration  in  the  air,  and  the  vibration-number  of  the 

resulting  note  is  found,  as  in  the  case  of  Savart's  wheel,  by  multiply- 
ing the  number  of  holes  and  the  number  of  revolutions. 

It  is  not  proposed  to  describe  in  detail  any  other  methods 

of  measuring  pitch,  since  they  concern  mathematicians  and 

men  of  science  rather  than  musicians.  They  owe  their  exis- 

tence to  the  need  for  reducing  the  margin  of  inaccuracy,  which 

is  necessarily  rather  wide  in  the  more  elementary  methods,  as 

near  as  possible  to  zero.  But  a  few  of  these  inventions  will 

now  be  mentioned,  as  the  student  should  have  a  general  idea 

of  the  scope  of  scientific  investigation. 

Mechanical  methods  include,  besides  the  two  already  described, 

(1)  the  Vibroscope — which  is  based  on  the  graphic  method  (see 
fig.  2,  p.  23) ; 

(2)  the  Monochord  or  Sonometer^  an   instrument  with   a   single 
string,  one  end  of  which  is  fixed,  the 
other  end  being  attached  to  a  weight. 
This  is  not  primarily  an  instrument  for 

Fro.  12  •  determining  pitch,  and  results  obtained 
from  it  involve  the  use  of  IT;  consequently  it  would  serve 
no  purpose  to  discuss  it  further ; 

(3)  measurement   by  means    of   the  phonograph    and    kindred 
instruments. 

Optical  methods : 
(1)  manometric flames,  already  mentioned  on  p.  23  ; 

(2)  M.  Lissajous1  method   of  making  visible  the  vibrations  of 
a  tuning-fork; 

(3)  the    Cycloscope,   an    elaborate    combination    of   microscope, 
revolving  black  drum  marked  with  equidistant  white  lines, 

and  a  tuning-fork  which,  entering  the  field  of  vision,  creates 
waves  which  the  expert  can  control  and  observe. 
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One  other  invention  may  be  named — the  Tonometer — which  by 
means  of  either  reeds  or  tuning-forks  provides  data  on  which 
mathematicians  can  base  their  calculations.  The  exact  nature  of 

the  apparatus,  which  involves  a  familiarity  with  the  problem  of 

'beats  of  the  third  order',  can  be  discovered  in  any  work  which 
treats  Acoustics  from  the  purely  scientific  side. 

The  pitch  of  any  given  sound  is  determined  and  expressed 

without  any  ambiguity  by  means  of  its  vibration-number ;  but 
the  pitch  of  any  given  note  in  the  musical  scale  is  a  matter  of 

pure  convention.  It  has  always  been  evident  that  great  con- 
veniences would  result  from  the  existence  of  one  recognized 

Standard  of  Pitch  \  but  it  is  only  in  recent  times  that  serious 
efforts  have  been  made  to  fix  such  a  standard. 

Theoretical  writers  have  for  long  favoured  a  pitch  which 

assumed  an  imaginary  note  C  whose  vibration- number  was  i. 
This  gave  a  simple  system  of  units.  One  vibration  took  one 

second :  one  wave-length  was  equal  to  the  number  of  feet 
in  the  velocity  of  sound  for  one  second,  &c.  Then  again 

the  first  octave  of  this  note  would  have  the  vibration -number  2, 

the  second  octave  22,  the  third  octave  23,  and  so  on,  until  we 

reached  middle  C  (28)  256  and  treble  C  (2°)  512.  This  standard 
is  still  frequently  used  by  mathematicians,  and  was  formerly 

called  Philosophic  Pitch. 

It  is  known  that  conventional  musical  pitch  has  risen  con- 

sistently from  early  times.  Handel's  tuning-fork  (to  go  back 

no  farther)  gave  treble  C  510,  but  the  old  'concert-pitch'  in 
England  gave  528  for  the  same  note,1  and  the  pitch  recognized 
by  the  Philharmonic  and  Crystal  Palace  orchestras,  until  the 

end  of  last  century,  was  as  high  as  treble  C  538,  and  Covent 

Garden,  in  1878,  adopted  540. 

In  France  a  Government  Commission,  in  1858,  fixed  treble 

C  =  5 1 7,  and  this  is  called  French  pitch,  or  Diapason  normal ; 

1  Fixed  by  the  Society  of  Arts  in  1869. 
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and  in  England,  in  1 896,  almost  the  same  pitch  was  adopted — 
522 — which  is  now  known  as  New  Philharmonic.  \  This  stan- 

dard is  gradually  becoming  universal,  and  the  only  obstacle 
to  it  of  any  account  is  the  expense  involved  in  replacing 

wind-instruments  and  retuning  organs. 
\ 



PART  III.     INTENSITY 

CHAPTER  VI 

•N  MATHEMATICAL  VARIATION 

WHEN  we  say  that  a  thing  varies  in  amount  we  mean,  as 
every  one  knows,  that  the  quantity  of  it  is  different  at  different 
times.  Sometimes  such  variation  seems  to  be  quite  arbitrary, 
and  we  can  discover  no  cause  for  it,  and  no  method  of  esti- 

mating what  the  quantity  will  be  at  any  given  time.  But 
in  other  cases  we  can  see  that  the  increase  and  decrease  which 

constitute  the  variation  are  due  to  certain  laws,  and  that  if  we 

understand  the  laws  we  can  predict  the  variation  with  cer- 
tainty. In  such  cases  the  increase  and  decrease  are  found  to 

be  indissolubly  connected  with  the  increase  and  decrease  of 

something  else ;  and  it  is  one  of  the  tasks  of  mathematicians 
to  discover  the  relation  between  the  two  rates  of  variation. 

A  student's  progress,  for  instance,  depends  on  the  amount 
of  work  he  does— i.  e.  the  variation  in  progress  is  indissolubly 
connected  with  the  variation  in  work,  each  (as  mathematicians 
would  say)  being  difiinction  of  the  other.  And  though  such 
a  case  is  one  where  everybody  will  instantly  see  the  connexion, 
it  is  also  one  where  it  is  peculiarly  difficult  to  discover  a 

definite  relation.  For  though  eight  hours'  regular  work  a  day 
may  produce  twice  (or  more  than  twice)  the  progress  resulting 

from  four  hours'  work,  it  is  clear  that  twenty-four  hours, 
indulged  in  regularly,  will  not  produce  three  times  the  pro- 

gress resulting  from  eight. 
There  are  four  kinds  of  mathematical  variation  which  occur 

in  elementary  acoustics,  and  a  student  should  be  able  to  grasp 
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their  meaning  with  very  little  trouble.  The  first  two  kinds 
are  merely  matters  of  obvious  common  sense ;  but  the  two  last, 

though  almost  equally  simple  in  meaning,  can  only  be  ex- 
pressed in  what,  to  most  people,  is  mathematical  jargon. 

Hence  these  two  latter  forms  are  seldom  really  apprehended 
by  those  unfamiliar  with  mathematics,  and  to  such  people 
the  laws  of  intensity  must  inevitably  remain  a  rigmarole  of 
nonsense. 

When  two  things  vary  together  — 
(a)  One  mny  vary  directly  as  the  other. 
This  is  the  simplest  case  of  all.  If  you  earn  £1  per  day, 

you  earn  £2  in  two  days,  £3  in  three  days,  and  so  on.  In 
mathematical  language  the  facts  are  stated  in  the  formula  that 
you  earn  £n  in  n  days,  where  n  stands  for  any  number  you 
like  to  say. 

When  £i  per  day  is  the  wage  we  say  that  the  unit  of  time 
is  a  day,  the  unit  of  money  a  sovereign  ;  and  if  we  know  the 
amount  paid  in  wages  or  the  amount  of  time  worked,  we  can 
find  out  the  unknown  from  the  known  by  the  simplest  mental 
arithmetic. 

An  instance  of  such  variation  in  Acoustics  occurs  when  we  consider 
the  effect  of  pressure  on  air.  Take  a  tube  which  is  open  at  one  end 
only,  and  insert  a  piston  in  that  opening.  Fig.  13  a  represents  this 
   tube  and  piston  in  a  state  of  rest 

a  I   i  U — i.  e.  when  the  atmospheric  pres- 
sure is  exactly  equal  on  each  side  of 

b  t  t~          0    the  piston. 
                 In  fig.  13  £  the  piston  has  been 

3  *   I-U  forced  down  the  tube,  and  though 
PIG.  13  tne  atmospheric  pressure  on  it  from 

outside    (i.e.    from    right    to    left) 
is  the  same,  the  pressure  of  the  air  from  inside  is  greater  than 
normal.  The  air  in  the  enclosed  chamber  has  been  forcibly  com- 

pressed (i.e.  its  density  has  been  increased)  and  a  corresponding 
force  is  required  to  keep  the  piston  in  position — that  is,  to  prevent 
the  elasticity  of  the  air  from  forcing  the  piston  back  to  its  normal 
position  in  fig.  1 3  a. 



ON  MATHEMATICAL  VARIATION  41 

In  fig.  i3<r  the  piston  has  been  moved  by  force  in  the  opposite 
direction,  and  the  air  in  the  enclosed  chamber  has  been  diminished 

in  density.  If  we  remove  the  force  which  holds  the  piston  in  this 
position,  then  the  pressure  of  the  atmosphere  at  the  free  end  (which 
is  still  normal)  will  force  the  piston  back  again  to  the  normal 
position  of  fig.  13  a;  and  this  means  that  the  pressure  of  the 
enclosed  air,  which  rose  above  normal  when  the  density  was 
increased,  falls  below  normal  when  the  density  is  diminished. 

This  fact  is  embodied  in  Mariotte's  Law,  that  the  pressure  of 
a  mass  of  air  varies  as  its  density,  so  that  when  the  pressure  is 
doubled  the  density  is  doubled  also. 

(6)  One  may  vary  inversely  as  the  other. 

A  number  is  inverted  when  it  is  turned  upside  down.  Thus 

the  inversion  of  f  is  f  :  the  inversion  of  5  (which  is  equivalent 

to  f )  is  f 

If  a  man  can  dig  a  plot  of  a  certain  size  in  12  hours,  he 

will  take  24  hours  to  dig-  two  such  plots,  36  hours  to  dig  three, 
and  so  on  ;  and  the  variation,  as  between  time  spent  and  work 
done,  is  direct. 

But  if  two  men  set  to  work  on  the  original  plot  the  digging 

will  take  six  hours  only ;  if  three  men,  then  four  hours,  and 

so  on.  And  in  this  case  we  say  that  the  time  taken  varies 

inversely  as  the  number  of  the  workers.  If  you  double  the 

labour  you  halve  the  time:  multiply  the  workers  by  any 

number  you  like  and  you  must  divide  the  time  by  the  same 

number.  Or,  in  mathematical  language,  n  workers  will  finish 

j    th the  job  in  (-)     the  time. 

An  example  of  such  variation  will  be  found,  later  on,  to  exist 
between  the  vibration-numbers  of  notes  and  the  lengths  of  pipes 
or  strings  required  to  produce  them. 

(c)  One  may  vary  directly  as  the  square  of  the  other. 

The  grasp  of  the  above  depends  on  the  recognition  of  one 

simple  geometrical  fact  illustrated  in  fig.  14.  Draw  an  acute 

angle  HAK,  and  bisect  it  by  a  dotted  line.  Then  measure 
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off  a  series  of  equidistant  points  along  the  dotted  line.  In 

fig.  14  the  four  points  so  measured  (pl,  p*,  pz,  p*}  are 
all  (let  us  suppose)  an  inch  apart. 

FIG.  14 

If  we  now  draw,  through  these  points,  lines  at  right  angles 
to  the  dotted  line,  and  limited  on  each  side  of  it  by  the 
lines  AH  and  AK  (BC,  DE,  FG,  HK),  then  such  lines  have  an 

elementary  geometrical  relationship.  For  DE,  being  exactly 
twice  as  far  from  A  as  BC  is,  is  exactly  twice  the  length. 
FG  is,  similarly,  three  times  the  length  of  BC,  and  HK  four 
times. 

Let  us  now  imagine  that  a  lantern  is  made  to  shine  on  a 

white  sheet  in  a  dark  room — just  the  ordinary  magic-lantern 
of  a  village  entertainment.  If  we 
insert  a  slide  which  is  quite  black 
except  for  a  small  square  in  the 
middle,  then  a  square  of  white 
light  will  be  thrown  on  the  sheet. 

Assuming  that  the  lantern  is  shining 
at  L  (fig.  15),  then  BCDE  represents  the  square  of  light; 
and  if  BC  is  exactly  one  yard,  then  there  is  one  square  yard 
illuminated  on  the  sheet. 

Now  if  we  move  the  lantern  twice  as  far  away  from  the  sheet, 
we  know  (from  fig.  14)  that  BC  will  become  twice  as  long. 

FIG.  15 
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That  is  to  say,  the  square  will  now  have  a  side  2  yards  in 

length  and  four  square  yards  in  area.  Similarly,  if  we  move 

the  lantern  three  times  as  far  we  get  a  square  whose  area  is 

9  square  y?x&$,,four  times  as  far  giving  us  16  square  yards, 
and  so  on. 

We  can  tabulate  these  results  as  follows : 

1  unit  of  distance  gives  us  an  area  of  i  square  yard. 

2  units  of  distance  give  us  an  area  of  4  square  yards  (22). 

3  units  of  distance  give  us  an  area  of  9  square  yards  (32). 

4  units  of  distance  give  us  an  area  of  16  square  yards  (42). 
I.e.  the  area  of  light  on  the  sheet  varies  directly  as  the 

square  of  the  distance. 

Two  applications  of  this  form  of  variation  to  Acoustics  may  be 

pointed  out  here  : 

(1)  When  the  density  is  the  same,  the  velocity  of  sound  in  one 
medium  compared  to  its  velocity  in  another  varies  directly  as  the 

square  root  of  the  elasticity.     If  one  medium  is  four  times  as  elastic 

as  the  other,  the  velocity  of  sound  in  it  is  twice  as  fast ;  if  nine  times 
as  elastic,  then  three  times  as  fast. 

(2)  The  first  Law  of  Intensity,  discussed  in  the  next  chapter. 

(a)  One  may  vary  inversely  as  the  square  of  the  other. 

The  same  example  of  the  magic-lantern  will  serve  to  illus- 
trate this  form  of  variation  if,  instead  of  the  area  illuminated, 

we  consider  the  intensity  of  illumination.  The  same  amount 

of  light  which,  at  one  unit  of  distance,  had  to  fill  a  space 

of  i  square  yard  of  sheet  is  obliged,  at  twice  the  distance, 

to  spread  itself  over  4  square  yards ;  and  consequently  it 

will  only  be  a  quarter  as  strong  at  any  point.  At  three  units 

of  distance  it  has  to  cover  9  square  yards,  and  will  be  ̂   as 

strong. 

Thus  we  can  say  that  the  strength,  or  intensity,  of  illumina- 
tion varies  inversely  as  the  square  of  the  distance  between 

the  lantern  and  the  sheet. 

As  acoustical  examples  of  such  variation  we  may  add  : 
(i)  When  the  elasticity  is  the  same,  the  velocity  of  sound  in  one 
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medium  compared  to  its  velocity  in  another  varies  inversely  as  the 
square  root  of  the  density.  Oxygen  and  hydrogen,  for  example, 
have  the  same  elasticity,  but  the  former  is  16  times  as  heavy  as 
the  latter  (i.e.  its  density  is  16  times  as  great).  Therefore  sound 
travels  in  oxygen  only  %  as  fast  as  in  hydrogen. 

For  those  who  are  not  dismayed  by  mathematical  formulae  the 
above  law  may  be  expressed  as  follows  : 

If  the  elasticity  (E]  and  density  (Z>)  of  two  different  media  are 
known,  the  comparative  velocity  of  sound  (  V]  in  them  may  be  calculated 
from  the  formula 

(2)  The  time-period  of  the  swing  of  a  pendulum  varies  inversely 
as  the  square  root  of  its  length.     If  you  multiply  the  length  by  four 
the  number  of  oscillations  is  half  as  many  ;  multiply  the  length  by 
nine  and  the  number  of  oscillations  is  one-third. 

(3)  The  second  Law  of  Intensity,  discussed  in  the  next  chapter. 



CHAPTER  VII 

INTENSITY 

INTENSITY  is  the  second  of  the  three  elements  (Pitch, 

Intensity,  and  Quality)  into  which  we  can  divide  any  sound, 

and  it  is  merely  another  name  for  '  loudness '.  We  have  seen 
that  it  is  possible  to  make  a  vibrating  body  register  its  vibration 

in  black  and  white,  and  that  the  wave-curves  so  registered 

have  three  characteristics — length,  amplitude,  and  shape. 

And  we  saw,  further,  that  pitch  depended  solely  on  the  pace 

of  the  vibrations :  i.  e.  on  the  length  of  the  wave,  since  the 

slower  the  tuning-fork  in  fig.  2  (p.  23)  vibrates,  the  fewer 

wave-lengths  will  it  trace  on  the  smoked  glass. 
Intensity  depends  on  the  amplitude  of  the  vibrations,  and 

on  nothing  else. 

When  we  see  a  body  agitated  into  motion  by  some  external 

stimulus — a  spinning-top  or  a  plucked  violin-string  will  serve 

as  illustrations — we  know  by  experience  that  as  time  passes 
the  agitation  imparted  to  the  body  by  the  stimulus  decreases ; 

i.  e.  unless  we  renew  the  stimulus  the  movement  will  gradually 

diminish  and  ultimately  come  to  an  end.  We  suspect  this 

fact,  and  learn  to  rely  on  it,  many  years  before  we  know 

anything  about  friction  or  elasticity.  Similarly  we  know  that 

a  tongue  of  metal,  fixed  in  a  vice  and  made  to  vibrate,  will  at 

length  reach  its  position  of  rest. 

Now  the  distance  from  the  position  of  rest  to  the  extreme 

point  of  any  oscillation  is  called,  as  we  know,  its  amplitude, 

and  this  amplitude  gradually  decreases  throughout  the  whole 

process  of  vibration.  But  we  also  know,  by  experience,  that 

the  sound,  of  which  the  vibrating  tongue  is  the  source,  grows 

at  the  same  time  gradually  weaker  and  ultimately  ceases. 
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And  our  natural  suspicion  that  these  two  diminishing  quanti- 

ties—created at  the  same  moment,  simultaneously  at  the  full, 
decreasing  together  and  disappearing  at  one  and  the  same 

instant — must  be  interdependent  and  causally  connected,  is 
true,  and  is  founded  on  physical  law. 

The  student  should  be  quite  clear  that  the  amplitude  of  the 

curve  in  fig.  2  (p.  23)  depends  solely  on  the  distance  which 

the  agitated  prong  swings  away  from  its  position  of  rest.  As 

the  oscillations  of  the  prong  decrease  from  their  maximum  to 

zero,  so  the  amplitude  of  the  curve  decreases  from  its  fullest 

width  to  nil — since,  when  the  fork  is  at  rest,  the  needle  will 

trace  a  straight  line  on  the  moving  glass. 

By  careful  experiments  physicists  have  discovered  that  there 

is  a  definite  connexion  between  amplitude  and  intensity,  and 

have  established  the  law  that  intensity  depends  on  amplitude 
alone. 

The  two  laws  of  Intensity  are  as  follows  : 

1 i )  Intensity  varies  directly  as  the  square  of  the  amplitude 
of  Vibration. 

If  two  points  be  taken  on  the  curve  traced  by  the  tuning-fork  on 
smoked  glass  such  that  the  amplitude  of  one  is  twice  the  amplitude 
of  the  other,  then  the  volume  of  sound  at  the  moment  of  tracing  the 
curve  of  greater  amplitude  was  four  times  that  at  the  moment  of 
lesser.  In  other  words,  when  the  swing  of  the  prong  or  fixed  metal 
tongue  is  doubled  the  resultant  sound  is  multiplied  in  volume 

by  4. 

(2)  Intensity  varies  inversely  as  the  square  of  the  distance 

from  the  vibrating  body. 

If  you  are  listening  to  the  sound  of  a  trumpet  at  a  distance  of 
100  yards,  and  then  walk  away  from  it  until  the  distance  is  200  yards, 
you  will  hear  only  a  quarter  of  the  volume  of  sound  that  you  heard 
in  the  first  instance ;  while  at  300  yards  you  will  hear  only  a  volume 
of  one-ninth. 

The  second  of  the  above  laws  may  perhaps  be  more  easily  grasped 

if  it  is  connected  with  the  earlier  illustration  of  the  magic-lantern. 
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Areas  of  spheres  vary  as  the  squares  of  their  radii.  That  is  to  say, 

if  a  round  football-bladder  of  given  radius  is  blown  out  until  the 
radius  is  doubled,  it  will  require 

four  times  the  amount  of  leather 
to  cover  it.  And  since  unim- 

peded vibrations  spread  out 
equally  in  all  directions  from 

their  source  (like  an  expanding 

bladder),  we   can  see  that  the  FlG- l6 
vibrations  starting  at  A  (fig.  16),  which  have  to  cover  an  area 
whose  side,  when  the  radius  is  AC,  is  the  arc  BC,  will  have  to 
cover  an  area  whose  side  is  the  arc  DE  when  the  radius  has  been 
doubled  into  AE.  And  the  latter  area  is  four  times  the  former. 

It  must  be  remembered  that  the  Intensity  of  sound,  though 

following  the  above  laws  when  conditions  are  ideal  and  con- 
stant, is  interfered  with  to  a  certain  extent  by  several  fortuitous 

and  more  or  less  incalculable  circumstances.  Thus  the  direc- 

tion and  power  of  the  wind,  and  also  the  density  of  the  air  at 

a  given  moment,  will  modify  the  volume  of  sound.  The  in- 
fluence of  wind,  though  very  great,  cannot  be  calculated  with 

any  approach  to  exactness  ;  and  the  question  of  the  variations 

in  density  of  our  atmosphere  from  time  to  time  does  not  fall 

within  the  scope  of  knowledge  essential  for  a  musician. 

But  Intensity  is  enormously  affected  by  one  other  considera- 
tion into  which  it  is  imperative  we  should  inquire,  viz.  the 

presence,  accidental  or  otherwise,  of  some  body  which,  by 

sympathetic  vibration,  will  reinforce  the  vibrations  of  the 

original  body.  The  next  chapter  will  deal  with  reinforcement 
of  this  kind,  which  is  called  Resonance. 
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RESONANCE 

WHEN  the  vibrations  of  the  air  come  into  contact  with  an 

obstacle  which  prevents  their  normal  progress,  any  one  of 
three  things  may  happen. 

They  may  be  (i)  reflected, 
(2)  destroyed, 

(3)  refracted. 
(1)  Reflection  occurs  when,  owing  to  the  hardness  of  the 

obstacle,  the  vibrations  rebound  and  continue  their  course  in 

a  changed  direction.     It  is  clear  from  this  that  if  we  take  up 
a  position  in  a  building  and  listen  to  a  singer  or  speaker,  we 

may  actually  receive  through  our  ears  not  only  the  air-vibra- 
tions which  come  to  us  direct  from  his  mouth,  but  also  rein- 

forcing vibrations  which  are  reflected  from  various  parts  of 
the  walls  and  ceiling.     When  these  auxiliary  vibrations  reach 

us  simultaneously  with  the  direct  ones — or  at  so  nearly  the 
same  instant  that  the  combination  results  in  one  reinforced 

sound — we  say  that  the  resonance  of  the  hall  is  good.     When 
confusion  results  the  local  reporter  will  repeat  what  every  one 

else  has  been  saying — '  the  acoustical  properties  of  the  building 

are  unsatisfactory '. 
When  reflection  occurs  in  an  exactly  opposite  direction — as 

when  we  sing  a  note  down  a  straight  corridor,  or  across  the 

water  towards  a  perpendicular  cliff — it  creates  a  thing  familiar 
to  every  one,  i.  e.  Echo. 

(2)  Destruction  occurs  when  the  obstacle  is  so  soft  in  sub- 

stance that  the  natural  resilience,  or  power  of '  bounce  ',  in  the 
air  (due  to  its  elasticity)  is  prevented  from  coming  into  play. 
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A  similar  result  follows  if  we  throw  a  tennis-ball  against  a 
feather  mattress. 

The  practical  importance  of  this  fact  is  great.  For  instance, 

it  gives  an  adequate  explanation  of  the  well-known  fact  that 

a  room  is  less  resonant  when  full  of  people  than  when  empty  ; 

for  the  soft  material  of  the  clothes  of  the  audience  is  engaged 
in  killing  all  vibrations  which  come  in  contact  with  it.  The 
resonance  of  the  room  would  not  be  diminished  if  the  audience 

were  replaced  by  an  equal  number  of  undraped  stone  statues. 

An  interesting  case  of  the  intentional  use  of  a  soft  obstacle  is 
provided  by  the  chapel  of  Keble  College,  Oxford.  This  building 
is  not  only  high  in  comparison  with  its  length  and  width,  but  also 
has  walls  which  are  hard  and  smooth,  and  of  an  almost  unbroken 
surface.  When  it  was  first  used  it  was  found  to  be  so  full  of 

resonance  and  echo  that  a  speaker's  words  became  a  mere  jumble 
of  sound.  To  remedy  this  a  large  curtain  was  hung  across  the  west 
end  which,  by  destroying  vibrations  that  would  otherwise  have  been 
reflected,  very  largely  improved  the  conditions  of  hearing. 

(3)  Refraction,  since  it  refers  to  the  change  (or  '  bending ') 
of  the  direction  of  vibrations  due  to  conditions  in  the  air  itself, 

will  not  be  dealt  with  until  we  approach  the  whole  question 
of  Transmission. 

The  meaning  attached  to  the  word  Resonance  up  to  this 

point  is  the  one  which  most  human  beings  would,  in  conversa- 
tion, understand  it  to  convey.  It  is  not,  however,  the  scientific 

meaning  of  the  word.  Scientifically  Resonance  refers  to  that 

increase  or  reinforcement  which  a  sound  can  acquire  through 

the  co-operation  of  other  vibrating  bodies  or  columns  of  air, 
whose  auxiliary  vibrations  will  add  something  more  to  the 

sum-total  of  sound  resulting  from  the  original  body  alone. 

Resonance  proper  is  of  three  kinds : 

(i)  The  original  vibration  may  be  reinforced  (i.e.  the 

amplitude  of  the  vibration  may  be  increased,  and  the  resulting 

tone  thereby  made  louder)  by  the  help  of  some  other  body 
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which,  whatever  its  shape  and  size,  will  vibrate  at  the  same 
rate. 

(2)  We  can  secure  the  same  result  by  deliberately  bringing 
the  original  body  into  contact  with  a  column  of  air  whose 

length  has  a  calculated  relationship  to  the  wave-length  of  the 
original  vibrations. 

(3)  We  can  induce  the  sympathetic  vibration  of  a  second 
body  by  a  stimulus   conveyed  to  it  through  an  intervening 

air-space. 
In  these  three  cases  the  reinforcement  is  obtained 

in  (i)  by  the  direct  impact  of  a  vibrating  body  on  a  body 
at  rest, 

in  (2)  by  the  action  of  a  vibrating  body  directly  on  the air, 

in  (3)  by  the  excitement  
communicated  

from  one  body  to 
another  by  means  of  air-vibrations. 

(1)  An  example  of  this  kind  is  seen  when  we  place  the  end 
of  a  vibrating  tuning-fork  on  a  table.     The  wood  of  the  table, 
independently  of  its  dimensions  and  shape,  is  agitated  into 
a  state  of  vibration  which,  in  the  matter  of  rapidity,  is  under 
the  control  of  the  fork.     The  sound  of  the  fork,  ordinarily  so 
feeble  as  to  be  inaudible  unless  the  instrument  is  placed  quite 
close  to  the  ear,  now  becomes  so  strong  that  it  can  be  heard 

plainly  at  a  distance  of  many  yards. 
(2)  A  simple  example   of  direct  action  on  the  air  by  a 

vibrating  body  is  provided  by  the  ordinary  organ-reed.    Such 
a  reed  produces  by  itself  a  poor  and  somewhat  raucous  tone, 
whose  pitch  is  governed  by  the  pace  at  which  the  reed  vibrates. 
Knowing  this  pitch  we  can,  of  course,  find  its  vibration- 

number  ;  and  knowing  the  vibration -number,  we  can  find  the 
wave-length  of  the  sound  in  air.     Constructing  a  pipe  of  such 
a  length  (i.  e.  a  pipe  containing  a  column  of  air  of  the  length 

required),  we  place  it  over  the  reed,  and  the  column  will '  catch ' 
the  vibration,  and  by  vibrating  in  sympathy  will  so  reinforce 
the  sound  that  it  attains  a  full  and  rich  quality. 
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Another  example  is  found  in  the  human  voice,  where  the 
comparatively  weak  vibrations  of  the  vocal  cords  are  reinforced 
by  the  columns  of  air  in  the  mouth,  throat,  and  nasal  cavities. 

One  of  the  main  objects  of  voice-training1  is  to  secure,  by 
practice,  such  instinctive  muscular  control  of  these  cavities 
that  the  air  enclosed  in  them  is  always  of  the  exact  dimensions 
required  for  the  reinforcement  of  the  note  which  the  vocal 
cords  are  producing. 

(3)  Many  simple  experiments  may  be  made  by  any  one 
who  wishes  to  establish  the  principles  of  the  third  and  com- 

monest form  of  Resonance* 

(a)  Silently  depress  on  a  piano  the  three  notes  1  \',y. 

Then  sing  into  the  piano,  fairly  loudly,  any  of  the  three  notes. 
As  a  result  the  strings  corresponding  to  whichever  note  you 
sing  will  at  once  begin  to  vibrate  in  sympathy,  and  when  you 
cease  singing  the  piano  will  continue  (as  long  as  you  keep  the 
dampers  off  the  strings  by  holding  the  notes  down)  sustaining 

whichever  note  you  have  sung.  That  is  to  say,  the  piano- 
strings,  having  been  stretched  to  that  definite  degree  of  taut- 
ness  that  will  enable  them  to  produce  a  certain  definite  number 
of  vibrations  per  second,  can  produce  them  either  directly, 
when  acted  on  by  a  hammer,  or  sympathetically,  owing  to  the 
fact  that  the  air  around  them  is  already  vibrating  at  the  same 

pace  as  that  at  which  they  themselves  cause  it  to  vibrate. 
(b)  Take  an  open  pipe  between  2  and.  4  feet  in  length. 

Such  a  pipe,  if  used  as  an  organ-pipe,  would  produce  a  note 
somewhere  between  tenor  C  and  middle  C  (c  and  c).  If  you 
then  sing  slowly  up  or  down  within  these  limits  with  your 
mouth  close  to  one  end  of  the  pipe,  you  will  find  that  suddenly 
one  note  acquires  an  enormously  increased  resonance;  and 

this  is  the  note  which  is  '  proper  '  to  the  pipe. 
Most  people  —  at  all  events  those  old  enough  to  recall  a  time 

1  Each  experimenter  must,  naturally,  choose  a  chord  within  the  range 
of  his  voice. 

D  2 
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when  the  electric  light  was  not  common — will  have  noticed 

a  practical  example  of  this  kind  of  resonance,  when  the  vibra- 

tion of  a  gas-flame  happens  to  coincide  with  the  note  proper 
to  the  glass  tube  or  globe  around  it.  A  shrill  and  unpleasant 

note  of  definite  pitch  is  the  result,  and  we  destroy  it  by  turning 

the  gas  either  up  or  down — i.  e.  by  altering  the  rate  of  vibration 
of  the  flame. 

(c]  Take  two  tuning-forks  (preferably  mounted  on  sounding- 
boards)  in  exact  unison ;  set  one  of  them  in  motion  and  place 

it  near  the  one  at  rest.  Gradually  the  silent  one  will  begin 

vibrating,  and  you  will  hear  its  note  after  you  have  damped 

the  original  fork  into  silence.  If  you  alter  the  vibration-rate 

of  the  second  fork  by  attaching  a  pellet  of  wax — even  to  the 

small  extent  of  making  its  frequency  262  instead  of  264 — it 
will  fail  to  sympathize. 

In  all  such  experiments  it  is  necessary  to  wait  a  little  for 

sympathetic  vibration.  The  air- vibrations  have  to  produce 
vibration  in  a  body  at  rest  by  continually  hammering  at  it, 

and  as  the  effect  of  a  single  such  vibration  is  almost  nothing 

it  is  only  the  accumulated  effect  that  tells  in  the  long  run.  If 

we  place  a  very  heavy  weight  in  a  swing,  and  tell  a  small  child 

to  set  it  swinging,  the  child  may  say  he  cannot  move  it ;  but 

if  he  can  move  it  by  the  smallest  fraction  of  an  inch  he  can 

ultimately  get  it  into  full  swing  (if  his  strength  and  patience 

hold  out),  and  his  feat  is,  like  that  of  the  air-vibrations  on  the 
silent  fork,  an  illustration  of  what  is  called  cumulative 

impetus. 

(d\  Tune  the  two  lowest  strings  of  a  violoncello  in  unison. 

If  you  then  pluck  the  C  string  fairly  sharply  it  is  quite  easy 

to  see  with  the  naked  eye  its  neighbour  agitating  itself;  and 

if  you  damp  the  C  string  the  instrument  continues  to  produce 

the  same  note  quietly,  owing  to  the  vibrations  communicated 

to  the  string  that  was  not  plucked.  When  the  instrument  is 

lying  flat  it  is  interesting  to  place  a  small  piece  of  paper,  bent 

into  A-shape,  on  the  G  string.  Almost  as  soon  as  the  C  string 
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is  plucked  the  paper  will  jump  off  the  G  string;  whereas  it 
will  lie  peacefully  at  rest  on  either  of  the  two  top  strings. 

From  the  above  and  similar  experiments  the  two  following 
laws  are  formulated : 

(1)  Maximum  resonance  results  when  the  two  bodies  con- 
cerned are  in  exact  unison ;  i.  e.  when  the  sound  proper  to 

each  of  them  has  exactly  the  same  vibration-number. 
(2)  Resonance  does  not  occur  in  such  cases  immediately, 

since  a  short  period  is  required  by  the  original  vibrating  body 

(or  the  air-vibrations  caused  by  it)  in  which  to  excite  the 
sympathetic  vibration  of  another  body  by  cumulative  impetus. 

The  immense  practical  importance  of  the  principles  of 
Resonance  will  be  realized  by  ajiy  one  who  considers  the  fact 
that  all  musical  instruments  are  merely  ingenious  ways  of 
securing  sympathetic  vibration.  In  a  later  chapter  the  methods 
and  differences  of  instruments  are  inquired  into  in  detail,  but 

it  may  be  pointed  out  here  that  even  in  such  well-known 
instruments  as  the  piano  and  violin  the  tone  is  due  entirely  to 

the  reinforcement  secured  by  sounding-boards  and  belly.  We 
might  remove  all  the  wood-work  from  a  piano,  leaving  the 
bare  action  and  the  iron  frame  with  the  strings  attached ;  or 

we  might  stretch  four  violin -strings  to  their  usual  tension,  by 
means  of  pulleys  and  weights,  without  using  any  enclosed 
chamber ;  but  in  neither  case  could  we,  in  the  absence  of  the 

means  of  reinforcement,  produce  any  sound  of  the  slightest 
musical  value. 

In  making  experiments  we  sometimes  require  to  know, 
when  we  are  listening  to  a  collection  of  sounds,  whether  one 
particular  note  is  present.  To  enable  us  to  do  this  with 
certainty  Helmholtz  invented  a  device  called  a  Resonator. 

These  are  spherical  and  hollow  globes  of  metal  or  glass 
with  two  holes,  one  at  either  end  of  a  diameter.  One  hole  is 

small,  and  shaped  to  fit  the  ear ;  the  other  is  larger,  and  is  for 
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collecting  the  vibrations  of  the  air  corresponding  to  the  note 

of  the  resonator  (see  fig.  1 7).     If  you  are  listening  to  a  collec- 
tion of  sounds  and  wish  to  know  for 

certain  whether  middle  C   is   present, 

you  take  the  resonator  tuned  for  that 
note,  insert  the  small  end  in  one  ear, 
and  close  the  other  ear  with  your  hand. 

If  the  note  is  not  present  nothing  will 

FIG.  17  happen;    but  if  it  should  prove  to  be 
there  the   resonator  will   soon   vibrate   so   vehemently  that 
scarcely  anything  but  that  one  note  can  be  heard. 

It  must  be  noticed  that  in  the  case  of  resonators  the  sym- 
pathy is  practically  immediate ;  for  the  vibrations  already  in 

the  air  act  at  once  on  the  air  enclosed,  and  do  not  have  to 

wait  until  the  metal  or  glass  is  in  a  state  of  vibration. 



PART  IV.    QUALITY 

CHAPTER  IX 

TYPES   OF  MUSICAL   TONE 

IN  an  earlier  chapter  we  described  (p.  25)  the  six  methods 
resorted  to  for  the  purpose  of  producing  periodic  vibration. 
These  methods  will  now  be  considered  with  regard  to  the 

actual  process  by  which  each  of  them  originates  the  air-vibra- 
tions which  result  in  the  various  types  of  tone  at  the  disposal 

of  musicians.  For  this  purpose  we  can  consider  the  six  classes 
of  instruments  as  being : 

(1)  Flue-pipes. 
(2)  Stringed  instruments. 
(3)  Reed  instruments. 
(4)  The  voice  (a  form  of  reed). 
(5)  Drums  (percussion  instruments  with  membranes). 
(6)  Bells  (solid  percussion  instruments). 

(i)  Flue-pipes.  Everyone  knows  the.  construction  of  the 
penny-whistle.  A  column  of  air  is  forced  through  a  narrow 
channel  (the  mouthpiece);  it  strikes  an  edge  of  metal  (the 

'  lip ')  placed  in  such  a  manner  as  to  disturb  the  unity  and 

FIQ.J& 

direction  of  the  advancing  column.  The  agitated  air  then 

begins  to  vibrate  at  many  different  rates,  from  which  the  pipe 
selects  the  one  rate  which,  by  virtue  of  its  length,  it  is  qualified 
to  reinforce.  When  all  the  holes  in  the  pipe  are  closed  by 

fingers  we  can,  knowing  the  pipe-length  and  the  velocity  of 
sound,  prophesy  the  pitch  ;  and  when  the  hole  nearest; the 
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open  end  is  freed  by  lifting  a  finger  we  merely  have  to  deal 
with  a  pipe  of  shorter  length. 

The  flue-pipe  of  an  organ  is  simply,  in  principle,  a  penny- 
whistle  in  a  vertical  position.  In  order  that  it 

shall  stand  upright  the  '  mouthpiece ',  through 
which  the  column  of  air  is  to  be  forced,  is  placed 
in  line  with  the  horizontal  diameter  of  the  tube ; 

but  the  air  is  directed  through  a  narrow'  slit  on 

to  the  '  lip '  in  exactly  the  same  way  (fig.  19). 
The  vibration-fraction  of  the  note  produced  by 

an  open  pipe  is  found  by  dividing  the  velocity  of 
sound  (say  1,100  feet  per  second)  by  twice  the 
number  of  feet  in  the  length  of  the  pipe.  The 

_,   .     reasons  for    this  will   be  discussed  later ;    at  this 

point  the  student  may  accept  the  statement  that 

if  the  open  pipe  in  fig.  19  is  4  feet  in  length,  its  note 
will  have,  as  its  vibration -number, 

I  100 

FIG. 19 

For  stopped  pipes  we  divide  by  four  times  the  length. 

N.B.  The  pitch  of  afliie-pipe  sharpens  as  the  temper  atiire 
rises. 

A  rise  in  temperature  expands  the  air — i.e.  lessens  its 
density.  Then  the  velocity  of  sound  increases.  Consequently 
the  fraction 

velocity  of  sound 
twice  pipe-length 

must  (if  the  pipe-length  remains  unaltered)  grow  greater  as 
the  numerator  increases.  That  is  to  say,  the  number  of 
vibrations  per  second  produced  by  the  pipe  must  increase 
(i.  e.  its  pitch  must  sharpen)  as  the  temperature  rises.  As  the 
expansion  of  wood  under  any  ordinary  rise  of  temperature 

is  negligible  we  may  consider  the  pipe-length  as  constant ; 
metal  expands  more,  but  not  enough  to  counteract  the  effect 

of  air-expansion. 
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(2)  Strings  may  be  made  to  vibrate  in  three  ways :   by 

bowing  (violin),  striking-  (piano),  or  plucking  (guitar). 
When  a  stretched  string  is  excited  into  a  state  of  vibration 

it  appears  to  become  much  thicker  towards  the  middle  than  at 

the  fixed  ends ;  and  this  is  because  its  swing  is  of  the  same 

nature  as  the  swing  of  a  skipping-rope.     If  you  place  two 
people  (B  and  C)  at  equal  distances   from  yourself  (A)  and 
a  few  feet  away  from   each   other — so   that 
the  three  of  you  form  an  isosceles  triangle 

with  yourself  at  the  vertex  (fig.  20) — then  a  /  \ 
skipping-rope  turned  rapidly  by  them  will  /      \ 
present  to  you  the  appearance  of  the  loop  / 
BC,   which    is  a    vibration-form   with   fixed 

ends  (called  by  scientists  a  stationary  vibra-    B  tn   ^.c 
tion).     Its  form,  to  your  eye,  is  something  of  — 
two  dimensions  in  one  plane,  and  can  be 
measured  as  so  long  from  right  to  left,  so  high  from  top 
to  bottom.  But  the  actual  particles  forming  the  rope  are 
describing  paths  in  a  series  of  planes  at  right  angles  to  the 
plane  of  the  figure  which  you  see.  This  should  be  clear  if 
you  imagine  a  piece  of  ribbon  tied  to  any  point  of  the  rope  ; 
for  it  will  clearly  travel  in  a  circle  to  and  from  you. 

A  stretched  string  vibrates  in  the  same  way,  and  its  vibra- 
tions are  called  transverse  vibrations  because  the  movement 

between  the  fixed  ends  is  really  made  by  particles  moving  at 

right  angles  to  the  string-length.  This  name  distinguishes 
them  in  character  from  longitudinal  vibrations  (such  as  those 
of  the  air),  in  which  the  particles  oscillate  in  the  direction  in 
which  the  vibration  is  travelling. 

Transverse  vibrations  obey  the  laws  of  pendulum  motion. 

A  guitar-string  is  plucked  away  from  its  position  of  rest,  and 
immediately  starts  trying  to  regain  that  position  ;  and  unless 
it  is  plucked  a  second  time  it  must  succeed  in  doing  so.  This 
gradual  diminution  of  amplitude,  and  consequent  decrease  of 

intensity,  is  avoided  in  the  violin,  since  the  bow-pressure, 
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which  can  be  increased  or  decreased  at  will,  regulates  the 

amplitude  of  vibration. 

Four  considerations  govern  the  pitch  of  a  stretched  string : 
its  length, 

(b]  its  diameter, 

(c]  its  tension, 

\(t]  its  density. 

The  effects  of  these  four  factors  are  expressed  in  the  following 
four  laws : 

(a)  The  vibration-number  varies  inversely  as  the  length 
of  the  string. 

E.  g.  Double  the  length  of  string  and  you  will  halve  the 

vibration -number ;  that  is,  the  resulting  note  will  be 
an  octave  lower. 

(b]  The  vibration-number  varies  inversely  as  the  diameter. 

E.  g.  Halve  the  diameter  and  you  will  double  the  vibration - 
number ;  that  is,  the  resulting  note  will  be  an  octave 

higher. 

(c]  The  vibration-number  varies  directly  as  the  square 
root  of  the  tension. 

E.  g.  Screw  the  string  four  times  as  tight  and  you  double 
the  vibration-number. 

(d)  The  vibration-number  varies  inversely  as  the  square 
root  of  the  density. 

E.g.  Use  a  string  of  four  times  the  usual  density,  and  the 

vibration-number  of  the  note  it  gives  will  be  half  that 
of  the  usual  note. 

N.B.  Stringed  instruments  fall  in  fiitch  when  the  tem- 
perature rises.  The  increase  in  the  velocity  of  sound  is  more 

than  counterbalanced  by  the  fact  that  strings  expand  with 
heat  and  consequently  lose  their  tension. 

(3)  Reed  Instruments.  In  fig.  21  we  have  an  oblong  strip 
of  wood  or  thick  material  (ABC D),  out  of  which  a  smaller 
oblong  (E  F  G  H)  has  been  cut.  If  we  cut  a  piece  of  elastic 
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metal  to  a  size  a  little  longer  than  E  F  and  slightly  broader 
than  EH,  and  then  screw  it  at  K  over  the  opening  EFGH, 
we  can  so  cover  that  opening  that  wind  blown  from  above  on 
to  the  metal  strip  will  not  pass  through,  but  will  rather  close 
the  passage  more  tightly  in  proportion  as  the  force  of  the 
wind  is  increased. 

If,  however,  the  wind  is  blown  laterally  in  the  direction  of 
the  lines  FE  and  GH,  instead  of  from 
above  on  to  those  lines,  it  will  insinuate 
itself  between  the  metal  and  the  wood,  lift 

the  strip,  and  pass  through  the  opening. 
But  the  elasticity  of  the  strip  will  cause  it  to 
rebound  into  its  original  position  and  cut 
off  the  passage  of  air  through  the  opening ; 
and  then  the  same  process  will  repeat  itself, 
causing  a  series  of  puffs  in  the  air,  whose 
frequency  depends  on  the  quickness  of 
movement  of  the  strip  that  blocks  the 

passage. 

This  is  an  example  of  a  '  beating '  reed,  and  we  can  control 
its  action  in  three  ways,  each  concerned  with  one  of  the  three 
essential  qualities  of  a  sound  : 

(1)  By  regulating  the  tightness  of  the  screw,  by  selecting 
a  metal  of  the  required  elasticity,  and  by  altering  the 
length  of  the  tongue,  we  can  secure  vibrations  in  the 

air  of  any  given  rapidity ;  i.  e.  we  can  control  the  pitch. 

(2)  By  regulating  the  force  of  wind  we  can  alter  the  dis- 
placement of  the  tongue — which  means  the  amplitude 

of  its  swing  ;  i.  e.  we  can  control  the  intensity. 

(3)  By  the  application  of  pipes  or  chambers   containing 
columns  of  air  of  varying  shapes  and  dimensions  cor- 

responding to  the  pitch  chosen  we  can  reinforce  the 
tone  ;  i.e.  we  can,  within  limits,  control  the  quality. 

When  the  tongue  of  metal,  which  is  the  '  reed'  itself,  is.  cut 
so  that  it  will  just  pass  through  the  passage,  we  have  an 

FIG.  21 
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example  of  a  '  free  '  reed.  One  puff  will  pass  when  the  reed 
is  elevated,  being  cut  off  when  the  reed  rebounds  to  its  normal 

position  ;  but  then  the  reed,  instead  of  having  to  repeat  its 

action,  will  continue  its  swing  through  the  opening,  let  another 

puff  pass,  and  regain  its  position  of  rest. 

Many  orchestral  instruments  are  played  by  means  of  reeds. 

The  clarinet  is  a  beating  reed,  since  the  vibrations  are  made 

by  forcing  air  between  a  thin  wooden  reed  and  a  fixed  mouth- 

piece with  an  opening  smaller  than  the  reed.  The  oboe  and 

bassoon  are  double-reeds,  because  in  them  the  vibrations  are 

caused  by  forcing  air  between  two  reeds  so  placed  that  their 

edges  meet— just  as  children  often  force  air  between  two  sheets 

of  paper  or  two  pages  of  a  book.  But  in  all  the  above  instru- 
ments the  pitch  is  governed  by  the  length  of  the  pipe  attached. 

In  the  case  of  brass  instruments  played  with  a  cup-shaped 

mouthpiece  the  player's  lips  form  the  reed  and  the  brass 
tube,  as  before,  controls  the  pitch. 

In  the  case  of  the  human  voice  the  vocal  cords  form  a 

double-reed,  and  their  tension  governs  the  pitch. 
N.B.  Metal  reeds  will  flatten  when  the  temperature  rises, 

the  expansion  of  the  metal  causing  a  loss  of  elasticity  (and 

consequent  diminution  of  rate  of  vibration)  which  more  than 

counterbalances  the  increased  velocity  of  sound. 

Little  need  be  said  of  the  two  last  types  of  tone.  Elastic 

membranes,  such  as  drums,  produce  notes  whose  frequency  is 

controlled  by  the  tension  of  the  membrane ;  and  the  vibra- 
tions of  elastic  solid  bodies,  such  as  bells,  lead  to  intricate 

and  baffling  questions  which  are  the  special  work  of 

campanologists. 
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CHAPTER  X 

ON  MATHEMATICAL  PROGRESSIONS 

IN  its  early  stages  mathematics  deals  with  definite  numbers 

and  quantities,  known  and  unknown  ;  but  as  it  becomes  more 

advanced  it  has  to  deal,  to  an  ever  increasing  extent,  with 

groups  of  numbers  arranged  in  certain  orders.  The  technical 

name  for  these  groups  is  '  Series ' ;  and  a  Series  is  never  a 

haphazard  collection  of  numbers  (or  '  terms '),  but  always  an 
intentional  and  logical  arrangement  according  to  some  avowed 

plan. 
The  three  simplest  forms  of  series  are  known  as  the  Arith- 

metical, Harmonic,  and  Geometrical  Progressions. 

I.  ARITHMETICAL  PROGRESSION. 

A  series  of  terms  is  said  to  be  in  A.  P.  when  each  term 

differs  from  its  predecessor  by  the  same  amount 

The  following  are  three  series : 

(1)  i,  2,3,4,5,6,.... 

(2)  2,  4,6,8,  10,  12,   

All  the  above  are  Arithmetical  Progressions,  and  every 

reader  wrill  know  what  is  the  seventh  term  in  each  case. 

If  all  series  were  as  simple  as  the  above  it  would  be  possible 

to  work  out  most  questions  in  one's  head  ;  for,  however  '  bad 

at  mathematics '  a  person  may  be,  he  will  probably  be  able  to 
say  what  would  be  the  tenth  term  in  any  of  the  three  progres- 

sions given.  But  not  every  one  would  give  off-hand  the  tenth 
term  of  the  A.  P.  whose  first  two  terms  are  57,  121, .... 

A  very  small  amount  of  algebraical  knowledge  will  make 

all  such  questions  easy. 
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If  we  call  the  first  term  of  an  A.  P.  a,  and  the  common 
difference  between  the  terms  d  (the  common  difference  is 

obtained  by  subtracting  any  term  from  the  next  following), 
it  will  be  seen  that  all  arithmetical  progressions  take  the 
following  form  : 

a,  (a  +  d),  (a  +  2d),  (a +  &)... 

That  is  to  say,  the  tenth  term  must  be  (#  +  9</),  the  twenty- 
fifth  term  (a  +  24^),  and  so  on. 

This  fact  is  expressed  algebraically  by  saying  that  the  nih 
term  (n  merely  means  any  number  you  like  to  say)  of  an  A.  P. 
is  always 

a  +  (n—  i)  d. 
Thus  the  tenth  term  of  the  series  beginning  57,  121,  ...  is 

57 +  (9x64). 

Any  reader  who  can  do  easy  mental  arithmetic  can  become 
familiar  with  A.  P.  by  setting  himself  easy  problems  at  odd  moments. 

E.  g.  What  is  the  seventeenth  term  of  the  series  2,  5,  8,  1 1  .  .  .  —  ? 
The  answer  is : 

3)=  50. 

\    .j 
i 

II.  HARMONIC  PROGRESSION. 

When  a  fraction  is  turned  upside-down  it  is — as  was  pointed 
out  in  discussing  Variation —  inverted ;  and  a  whole  number 
may  always  be  treated  as  a  fraction  whose  denominator  is  i. 

Thus,  if  we  wish  to  invert  10,  we  call  it  \°-,  and  its  inversion 
1C         — 
IS        JQ. 

iAn  H.  P.  is  simply  a  series  which,  when  every  term  is 
nverted,  becomes  an  A.  P. 

The  following  two  series  are  Harmonic  Progressions  : 

/0\  1111  i 
\2)    ̂ »   5>  8>  TT5  T?»  •  •  • 

j  *  J  To  discover  the  72th  term  of  such  a  progression  we  must  invert 
•r  \j  the  ,first  two  terms.     Treating  these  as  an  A.  P.  we  can  get 
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the  first  term  and  the  common  difference  (a  and  d]  from  which 
we  find  the  nih  term  of  the  A.  P. 

Invert  this  term,  and  you  have  the  nib  term  of  the  H.  P. 

E.  g.  Find  the  ninth  term  of  the  H.  P.  -|,  £,  £,  3*1  •  •  • 
This  series  inverted  becomes  the  A.  P.  2,  5,  8,  1 1  ... 

The  ninth  term  of  this  is  2  +(8  x  3)  =  26. 

Therefore  the  ninth  term  of  the  H.  P.  is  •£$. 

III.  GEOMETRICAL  PROGRESSION. 

Just  as  the  terms  in  an  A.  P.  differ  by  the  continual  addition 
of  a  given  number,  so  the  terms  in  a  G.  P.  differ  through  the 
continual  multiplication  by  a  given  number ;  and  this  latter 
is  called  the  common  factor  (f): 

The  two  following  series  form  Geometrical  Progressions : 

(1)  i,  2,  4,  8,  16,32,....  (/=  2). 

(2)  2,6,18,54,   .(/=3)» 

Examining  (2)  we  find  that 
The  first  term      =  2 

The  second  term  =  2^(2  x  3  =  6). 

The  third  term     =  2/2  (2  x  3*  =  18). 
The  fourth  term  =  2/3  (2  x  33  =  54). 

From  this  it  is  easy  to  see  that  the  tenth  term  will  be  (2  x  3°), 
a  fact  which  is  expressed  algebraically  by  saying  that  the 

#th  term  =  a  xfn~l. 
It  is,  of  course,  far  more  difficult  to  work  out  problems  in 

G.  P.  mentally  than  those  in  A.  P.,  but  easy  ones  should  be 
tried. 

E.  g.  Find  the  ninth  term  of  the  following  G.  P. : 

i,  2,  4,  8,  ... 

The  ninth  term  must  be  of* — i.  e.  i  x  28 — and  this  will  prove  to  be 
256,  a  number  familiar  to  students  of  Acoustics  as  the  Philosophic 
Pitch  of  middle  C. 

It  is  absolutely  essential  that  the  student  who  wishes  to 
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grasp  the  elementary  facts  of  the  Harmonic  Chord,  to  say 
nothing  of  the  more  difficult  question  of  Temperament,  should 
have  in  his  mind  a  clear  and  distinct  conception  of  the  funda- 

mental characteristics  of  the  three  Progressions  explained 
above. 

If  they  still  present  any  difficulties  to  his  mind  he  must 
either  wrestle  further  with  them,  or  apply  to  some  more 
learned  friend  for  their  elucidation ;  for  his  whole  grasp  of 
the  foundations  and  structure  of  Acoustics  from  this  point 

onwards  depends  on  his  apprehension  of  the  principles  under- 
lying these  three  Series. 



CHAPTER  XI 

PARTIAL  TONES 

.  UP  to  this  point  we  have  treated  musical  sounds  as  if  each 

one  were  a  simple,  self-contained,  isolated  phenomenon. 

When,  for  instance,  the  note  known  as  '  middle  C '  has  been 
mentioned,  we  have  assumed  (though  the  assumption  has  not 
affected  the  truth  of  any  conclusion  arrived  at)  that  when 

a  sounding-body  vibrated  at  a  certain  pace  the  resulting 
vibrations  communicated  to  the  air  would  give  us  the  sound 
ofrniddle  C  and  nothing  else. 

It  is,  indeed,  possible  to  produce  such  a  pure  musical  sound, 

and  when  this  is  done  we  call  it  a  'simple  '  sound,  and  say 

that  it  is  produced  by  '  simple '  vibrations.  But  just  as  few  of 
the  colours  which  meet  the  eye  in  the  course  of  a  day  are  due 

to  light  of  one  kind  only,  the  great  majority  being  due  to 
combinations  of  many  kinds  of  light,  so  almost  every  sound 

we  hear,  of  whatever  pitch  and  quality,  is  in  reality  a  combina- 
tion of  simple  tones  of  different  pitches,  manipulated  by  the 

ear  so  as  to  give  the  impression  of  a  single  sound. 

The  above  statement  does  not  refer  (like  Browning's  '  star ') 
to  the  combinations  of  sounds  produced  by  different  bodies, 
or  by  a  body  capable  of  producing  simultaneous  sounds  ;  but 
to  something  more  subtle  than  the  mere  ability  of  the  mind 

to  apprehend  a  chord.  It  means  that  when  we  are  apparently 
listening  to  one  single  sound  of  definite  pitch,  such  as  a  single 
note  struck  on  the  piano,  we  are  almost  invariably  in  reality 
listening  to  a  combination  of  sounds  of  different  pitches  which 
sum  themselves  up  into  one  resultant  sound.  If  we  strike 
B  flat  or  C  sharp  on  the  piano  we  think,  until  we  know  better, 
that  we  hear  the  sound  of  the  particular  note  struck,  and  no 
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other  sound ;  but  a  very  little  ear-training  will  soon  convince 
the  most  sceptical  that  the  one  note  apparently  heard  in 
isolation  is  only  part  of  wTiatTls  audible,  and  that  various 
other  sounds  of  a  higher  pitch  are  included  in  it. 

Almost  every  one,  when  confronted  for  the  first  time  with 
the  above  statement  of  fact,  is  inclined  to  doubt  its  truth. 

Until  convinced  by  practical  illustration  he  will  look  on  it  as 
an  ingenious  theoretical  hypothesis,  since  no  one  willingly 

admits  that  he  has,  for  a  life-time,  been  deceived  by  the 
evidence  of  one  of  his  own  senses.  Such  a  person  should, 

at  this  point,  make  a  practice  of  continually  going  to  a 

piano  and  striking  (firmly  and  loudly)  the  note 

listening  to  it  with  concentrated  and  patient  attention,  with 
the  one  idea  of  detecting  other  sounds  than  C.  Sooner  or 
later  will  inevitably  come  the  moment  when  the  sound  of  G  (g), 
the  twelfth  above,  fills  his  ears  with  such  persistence  that  it 
will  seem  incredible  that  up  to  then  the  note  was  unnoticed. 
After  this  moment  the  recognition  of  other  sounds  is  merely 
a  matter  of  industry. 

The  ordinary  musical  sound,  then,  is  not  a  pure  or  simple 
tone,  but  a  complex  sound,  compounded  of  a  series  of  notes 
of  different  pitch  each  of  which,  when  we  isolate  it  (by 

resonators,  &c.),  proves  to  be  in  itself  a  pure  tone.1  TJtiis__ 
series  consists  of  a  fundamental  note  plus  its  fiYfrtnnf>gi  nr 
harmonics ;  but  it  is  essential,  for  reasons  which  will  appear 

later,  that  the  student  should  not  use  the  terms  '  overtones ' 

and  '  harmonics '  except  as  group-names  convenient  in  con- 
versation. In  all  acoustical  investigation  the  whole  series  is 

said  jo  consist  of  Partial  Tones,  the  fundamental  note  (or 

1  It  is  sometimes  stated  that  Helmholtz  called  such  a  compound  sound 
a  Klang,  and  the  corresponding  English  word  Clang  has  come  into  use 

for  the  same  purpose.  But  as  a  matter  of  fact  this  is  not  true.  Helm- 
holtz distinguished  Klang  (=  musical  sound)  from  Gerausch  (  =  noise) — 

[Tonempfindungen,  p.  14]— and  later  on  uses  Klangfarbe  for  Quality. 
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Prime  Tone)  beingjerinedj;he_FJist  Partial,  theJkstjQYgrtone 
the  Second  Partial,  and  so  on. 

In  fig.  22  we  have  a  chord  of  eight  notes,  sometimes  called 

the  Harmonic  Chord,  which  gives  us  the  first 

eight    partial    tones    of   the    note   C.      The 

numbers  at  the  side,  forming  an  elementary 

arithmetical   progression   from   i   to  8,  give 

us   at  once  the   number   of  the   particular  Vib. 

partial  tone.     E  (e')  is  the  fifth  partial,  B  flat  FIG.  22. 
(which,  it  may  be  noted,  is  not  in  tune)  is  the  seventh  partial. 

The  numbers  also  disclose  another  important  fact ;  for,  it 

we  take  the  geometrical  progression  i,  2,  4,  8,  &c.,  we  find 

that  the  partials  corresponding  to  these  numbers  are  always 

C ;  and  we  might  guess  that  if  we  explored  amongst  still 

higher  partials  (for  fig.  22  is  only  the  lowest  part  of  the 

harmonic  chord,  which  goes  on  upwards  to  the  very  limits  of 

audibility)  we  should  find  that  all  the  terms  of  this  geometrical 

progression  would  be  the  numbers  of  partials  representing  C. 

This  guess  would  prove  to  be  right,  for  the  sixteenth,  thirty- 

second,  sixty -fourth,  &c.,  partials  are  C  also,  each  C  being  an 
octave  higher  than  the  last. 

Thus,  if  you  have  to  construct  a  table  of  partial  tones  from 

a  given  note  B  flat,  the  first  partial  is  the  note  given,  the 

second  is  an  octave  higher,  the  next  octave  is  the  fourth,  the 

next  the  eighth,  and  so  on.  And  the  same  law  of  geometrical 

progression  applies  to  all  partials ;  for  in  fig.  22  G  (g)  is  the 

third  partial,  its  octave  is  the  sixth,  the  next  octave  will  be 

the  twelfth,  the  next  the  twenty-fourth,  &c.  And  since  the 

fifth  partial  is  E  (e'),  the  tenth,  twentieth,  fortieth,  will  all 
prove  to  be  E. 

The  Harmonic  Chord  of  fig.  22  also  enables  us,  by  the 

application  of  the  progressions,  to  find  the  vibration-number 
of  any  partial  if  the  frequency  of  the  prime  tone  is  known. 

For  the  vibration- number  of  the  third  partial  is  three  times 
that  of  the  prime  tone  ;  that  of  the  seventh  is  seven  times  that 

E  2 
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of  the  prime  tone.  Thus,  given  the  vibration -number  of  the 
prime  tone  of  fig.  22  as  66,  then  the  vibration-number  of  /, 
the  fifth  partial,  is 

66x5  =  330. 

Again,  from  fig.  22  we  can  discover  the  vibration -fraction  of 
intervals. 
./^  \ 

'A  vibration-fraction  is  a  modulus  which  enables  us  to  find  the 
/vibration-number  of  one  note  of  an  interval  if  we  know  that  of  the 
other.  If  one  note  has  a  frequency  of  200  and  another  has  150, 

^then  the  vibration-fraction  of  the  interval  they  form  is 
200        4 

TTo  —  ¥• If  we  were  told  that  two  other  notes  formed  the  same  interval,  and 

the  vibration-number  of  the  lower  note  was  66,  then  we  know  the 
frequency  of  the  higher  note  is 

66xfr  =  88. 

Suppose  we  wish  to  find  the  vibration-fraction  of  a  major  third. 

In  fig.  22  there  is  a  major  third    |(4j          ,  and  we  know  that  the 

j    •&- 
frequency  of  the  upper  note  is  330  (i.  e.  66  x  5) ;  that  of  the  lower 
note  264  (i.e.  66  X4).     So  the  vibration-fraction  is  ff£  =  f, 

The  sum  worked  out  merely  proves  that  the  vibration  - 
fraction  of  the  interval  between  any  two  notes  in  fig.  22  is  the 
fraction  formed  by  the  numbers  belonging  to  each  note  as 

partials.  Thus  the  vibration-fraction  of  a  minor  third  is  f ; 
that  of  a  major  sixth  is  f . 

In  this  way  we  can  find,  from  fig.  22,  the  vibration-frac- 
tion of 

octave, 

major  and  minor  sixth, fifth, 

fourth, 

major  and  minor  third, 
unison. 

If  we  can  find  the  fractions  belonging  to  major  and  minor 
seconds  and  sevenths  we  can  compile  a  list  covering  the  octave; 
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and  these  four  intervals  can  be  found  quite  easily  by  means 
of  a  little  ordinary  arithmetic. 

Major  Seventh. 

We  know  the  frequency  of  the  sixth  partial,  G  (g'),  for  it  is  six 
times  that  of  the  prime  tone,  and 

66  x  6  =  396. 

We  know  the  vibration-fraction  of  a  major  third  is  f  ;  therefore  the 

frequency  of  B  (b'),  the  major  third  above  the  sixth  partial,  is 
396x^  =  495. 

Now  the  frequency  of  this  note  b',  divided  by  the  frequency  of 
middle  C  (cf),  the  major  seventh  below  it,  will  give  us  the  vibration- 
fraction  of  a  major  seventh  : 

495   —  15 

—     8   '  ( 

Minor  Seventh. 

From  middle  C  (264)  find  the  F  (f)  above  it,  by  means  of  the 

vibration-fraction  of  the  fourth,  f  . 
264x1  =  352. 

The  G  (g)  below  this  f  having  a  frequency  198,  we  get  the 
vibration-fraction  of  a  minor  seventh  as 

352  _  J.6 

198"  —     9  ' 

Major  Second. 

The  same  f  (352),  with  the   g'  above  it  (396),  forms   a   major 
second.     Therefore  the  vibration-fraction  of  a  major  second  is 

396   _   9 
~35~2   —  8- 

Minor  Second. 

The  same  f  (352),|with  the  e'  below  it  (330),  forms  a  minor 
second.     Therefore  the  vibration  -fraction  of  a  minor  second  is 

ffl  =  if- 
We  can  now  give  a  complete  list  of  the  vibration-  fractions 

within  the  octave,  omitting  only  the  unnecessary  tritone. 
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Octave  =  2  Fourth  = 

=  £ 

Ma.  7    =  V  Ma.  3 

Mi.  7     =  V-  Mi.  3     =f 
Ma.  6=f  Ma.  2    =  | 

Mi.  6     =  |  Mi.  2     =  if 
Fifth     =  |  Unison  =  i 

N.B.  —  Students  are  strongly  urged  not  to  attempt  to  commit  the 
above  table  to  memory.  If  it  is  borne  in  mind  that,  when  the 

Harmonic  Chord  of  fig.  22  is  extended,  the  gth  partial  is  d"  and 
the  1  5th  is  b",  then  any  fraction  can  be  instantly  called  to  mind. 
The  more  roundabout  methods  just  employed  for  finding  the 
fractions  of  sevenths  and  seconds  were  used  in  order  to  show  how 

such  problems  can  be  solved  when  the  facts  given  are  limited. 

The  facts  dealt  with  in  this  chapter  will  be  the  better 
remembered,  and  the  more  believed  in,  if  their  truth  is  cor- 

roborated by  simple  experiments. 

Put  down   the   note   F  sharp    I  <)'•      °        on  the    piano, 
without  allowing  it  to  sound.  Then  strike  several  times, 

sharply  and  loudly,  bottom  C,  the  prime  tone  of  fig.  22. 
When  the  C  strings  have  been  damped  the  result  is  silence, 

although  the  F  sharp  strings  were  perfectly  free. 
But  try  the  same  experiment  again,  holding  g  (the  semitone 

above  the  F  sharp),  and  you  will  find  the  note  g  sounding 
loudly  ;  which  means  that  there  was  a  note  of  the  same  pitch 
already  present  in  the  C  sound,  which  aroused  the  sympathetic 
vibration  of  the  g  strings. 

The  same  experiment  may  be  tried  with  firstly  the  E  flat, 

and  secondly  the  E  natural  (e')  above  the  g  already  tested  ; 
and  the  note  which  is  a  partial  tone  to  C  will  be  the  one  to 
vibrate  in  sympathy. 

A  similar  test  may  be  made  by  placing  a  small  A  -shaped 

piece  of  paper  on  the  G  string  of  a  'cello  as  it  lies  flat.  When 
the  C  string  is  plucked  nothing  happens.  But  if  you  place 
a  finger  on  the  G  string,  reducing  its  length  to  that  required 
for  any  partial  tone  of  C,  the  paper  will  fly  off  the  string  as 
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soon  as  the  C  string  is  sharply  plucked.     The  same  facts  are 

established  as  in  the  previous  experiment. 

An  ingenious  instrument  has  been  built  by  Mr.  Rothwell,  the 

well-known  organ-builder,  on  which  some  experiments  can  be  made 
with  partial  tones.  A  prime  note  (low  G)  is  produced  by  a  soft 
bourdon  pipe,  and  its  partials,  up  to  the  twenty-fifth,  can  be  sounded 
in  any  combination  desired  (by  wedging  down  the  notes)  on  soft 
dulciana  pipes.  When  the  five  lowest  partials  are  sounded  the  result 
is  simply  a  soft  and  pleasant  chord  of  G  major ;  but  as  other  partials 
are  added  the  sound  of  the  chord  gradually  vanishes,  whilst  the 

prime  tone  advances  into  the  foreground  with  ever-increasing  volume. 
When  all  twenty-five  partials  are  sounding  together — each,  be  it 
remembered,  quite  soft  by  itself — the  result  is  one  enormous  low  G 
of  the  unmistakable  quality  of  a  trombone. 
A  curious  phenomenon  can  be  remarked  on  this  instrument. 

When  the  ten  lowest  partials  are  sounding  (i.  e.  the  eight  of  fig.  2  2 

with  d"  and  e"  added,  the  whole  being  transposed,  since  the  prime 
tone  of  this  particular  instrument  is  not  C  but  G)  they  seem,  for  the 
first  time,  to  coalesce  into  one  note  instead  of  a  chord.  And  this 
one  note  forms  a  perfectly  satisfactory  bass  for  any  of  the  other 
notes  which  are  sounded  with  it.  If,  for  instance,  the  i5th  partial 
(in  this  case  F  sharp)  is  sounded  with  the  prime  note  G  the  result 

gives  no  impression  whatever  of  a  major  seventh,  but  the  G  (with- 
out, of  course,  in  any  way  changing  its  pitch  or  quality)  seems  to 

assimilate  itself  to  the  sound  of  F  sharp  in  much  the  same  way  as 
the  sound  of  a  triangle  assimilates  itself  to  any  note  played  with  it. 

In  this  instrument  experiments,  though  extremely  interesting, 
cannot  be  carried  very  far,  partly  because  all  the  partials,  though 
soft,  are  of  comparatively  the  same  strength,  and  partly  because 
each  of  them  has  a  series  of  partial  tones  of  its  own.  If  an  organ 
of  this  kind  were  constructed  in  which  care  were  taken  to  produce 

pure  tones  only,  and  to  regulate  their  intensity,  it  would  be  possible 
to  establish  a  good  many  conclusions  as  to  the  nature  and  effects  of 
overtones. 

There  is  one  more  group  of  important  facts,  the  key  to 

which  is  supplied  by  the  Harmonic  Chord  of  fig.  22,  namely , 

the  relative  length  of  strings  and  pipes. 

Up  to  this  point  we  have  been  content  with  the  knowledge 

that,  other  conditions  being  equal,  shortening  the  length  of 
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a  string  or  pipe  raised  the  pitch  of  the  note  resulting  from 
it,  and  have  not  asked  whether  any  definite  relationship  could 

be  established  between  the  length  and  the  pitch.  Our  know- 
ledge has  been,  for  the  most  part,  qualitative  without  being 

quantitative. 

The  relationship  we  are  seeking  for  is  found  by  the  appli- 
cation of  harmonic  progression  to  the  series  of  partials.  If 

we  know  that  the  length  of  string  or  pipe  required  to  produce 
any  given  note  is  x  feet,  then  the  length  required  to  produce 

x  x 
its  fifth  partial  is  - ,  its  fifteenth,  — ,  and  so  on.  Thus  the o  o 

length  of  pipe  required  for  bottom  C,  the  prime  tone  of 

fig.  22,  is  roughly  8  feet;  the  length  required  for  d",  the 
ninth  partial,  will  be 

|  feet  =  io§  inches. 

If  the  A  string  of  a  'cello  is  2  feet  long,  then  the  length  required 
for  treble  E  (e"),  the  third  partial,  is 

(2  x  |)  feet  =  8  inches, 

which  means  that  the  finger  must  '  stop '  the  string  at  a  point 
two-thirds  of  its  length  from  the  nut,  and  one-third  from  the 
bridge. 

Vibration-fractions  are  used,  in  solving  problems,  exactly 
as  in  finding  frequencies,  always  remembering  that  in  harmonic 
progression  the  terms  of  a  series  are  inverted. 

For  instance,  suppose  we  are  given  the  interval  |flU    Q 

together  with  the  vibration -number  and  length  of  string  of  the 
G,  and  are  asked  to  find  vibration-number  and  length  of  string 
of  the  E. 

The  vibration-fraction  of  a  major  sixth  is  f,  and  so  the 
vibration-number  of  the  upper  note  is 

Vibration-number  of  lower  note  x  |. 
but  the  length  of  string  of  the  upper  note  is 

Length  of  string  of  lower  note  x  f . 

A  table  is  appended  of  the  first  ten  partials  of  C,  with  the 
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73 elementary  arithmetical  and  harmonic  progressions  necessary 

for  ascertaining  frequencies  and  string-  or  pipe-lengths. 

TABLE  OF  THE  FIRST  10  PARTIAL  TONES,  WITH  FREQUENCY- 

MODULUS  l  AND  STRING  (OR  PIPE)  LENGTH-MODULUS. 

Partials  of  C Rank  of  Partial 

loth 

9th 8th 

7th 
6th 

5th 

4th 

3rd 
2nd 

ist 

(Prime  Tone) 

Modulus 

for  obtaining1 Frequency 

Modulus  for 
obtaining    String 
and  Pipe  length 

1  A  modulus  is  a  constant  factor  by  which  we  can  change  a  thing  from 
one  system  to  another :  if  you  want  to  express  so  many  shillings  in  terms 
of  pence,  your  modulus  is  \i;  if  in  terms  of  sovereigns,  your  modulus 

is  ̂ j.  If  a  vibration-system  is  producing  C  and  we  wish  it  to  produce  e" ', 
we  must  multiply  its  frequency  by  the  factor  10 :  i.  e.  10  is  our  modulus; 

if  a  pipe  of  a  given  length  gives  the  note  e*  and  we  wish  to  know  what 
length  of  pipe  will  produce  c",  we  measure  the  given  pipe  and  multiply 
it  by  the  moduhis  f . 
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It  will  readily  be  seen  that  the  use  of  vibration-fractions 
forces  us  to  use  multiplication  and  division  in  the  addition  and 
subtraction  of  intervals  where,  on  the  keyboard,  musicians 
merely  add  or  subtract.  Thus  a  major  third  added  to  a 
minor  third  makes,  as  every  musician  knows,  a  perfect  fifth. 
But  if  it  is  the  vibration-fraction  of  a  fifth  that  we  want,  we 

must  multiply  (and  not  add)  the  vibration-fraction  of  the 
major  and  minor  thirds  : 

5   v  6    _    6    _    3 
f  X   5    —  ¥  —   2' 

Example.  Given  the  frequency  of  a  note  as  60,  and  the  vibration- 
fraction  of  a  fourth  and  major  third  as  f  and  f  ,  what  is  the  frequency 
of  the  major  sixth  from  the  given  note  ? 

Fourth  +  major  third  =  major  sixth. 

*  X  f  =  vibration-fraction  of  major  sixth  =  J. 
Required  frequency  =  60  x  f  =  100. 

Again,  if  we  have  a  minor  sixth  and  wish  to  reduce  it  to 
a  minor  third,  we  subtract  a  perfect  fourth  ;  but  in  dealing 
with  the  vibration-  fractions  of  the  intervals  we  must  divide 

instead  of  subtracting. 

Example.  Given  C  =  260  and  A  flat  =  416,  find  the  frequency 
of  the  E  flat  which  lies  between  them,  the  vibration-fractions  of  a 
perfect  fourth  and  minor  sixth  being  f-  and  f  . 

Vibration-fraction  of  minor  third  =  f  -=-f —  s  v  3 
-  5  A  4 

_  6. 

~  5 

frequency  of  E  flat  =  260  xf  =  312. 
We  could  have   reached   the   same   result   in  a  shorter  way  by 

saying  that  since  E  flat  is  a  fourth  below  A  flat, 

frequency  of  E  flat  =  frequency  of  A  flat  -f-  f 

=  312- 

Fourier's  Theorem  establishes  the  fact  that,  however  com- 
plex the  wave-curve  of  a  periodic  vibration  may  be,  it  can 

always  be  resolved  into  a  number  of  simple  wave-curves 
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selected  from  a  series  whose  lengths  form  the  harmonic 

progression  i,  4,  f,  $,  .  .  .  &c. 
The  true  application  of  curves  to  vibrations  is  dealt  with 

later  (c.i6  seq.),  and  at  this  point  the  student  need  only  consider 

the  meaning  of  Fourier's  Theorem  as  applied  to  sounds : 
Any  musical  sound  which  is  not  a  simple  tone  can  be 

resolved  into  a  number  of  simple  tones  selected  from  a  series 

whose  vibration -numbers  are  in  the  proportion  i,  2,  3,  4, 
5,  ...  &c. 

N.B.  Fourier's  Theorem  does  not  imply  that  all  of  the  series 
will  be  present.  A  compound  tone  may  consist,  say,  of  a  prime 
tone  modified  by  its  sixth  partial.  But  a  compound  sound  must 
consist  of  at  least  two  simple  tones,  and  may  include  the  whole 
series  of  partials. 



CHAPTER  XII 

TIMBRE 

THE  fact  that  the  sounds  we  hear  are  seldom  simple  tones, 

but  are  almost  invariably  composite  sounds  (or  clangs)  com- 
posed of  a  number  of  partial  tones  each  in  itself  simple,  suggests 

the  question  whether  these  partials  are  always  present  in 

exactly  the  same  degree.  When  we  hear  middle  C  played 

first  on  a  trumpet  and  then  on  a  violin  we  know  that  the  two 

sounds  have  certain  things  in  common  :  their  frequency  is  the 

same,  their  vibrations  travel  through  the  air  at  the  same  pace. 

But  if  we  ask  whether  the  two  sounds  are  composed  of  the 

same  partials,  the  answer  is '  yes '  as  far  as  the  series  of  partials 

belonging  to  middle  C  is  concerned,  '  no '  in  so  far  as  each 
instrument  makes  it's  own  selection  and  varies  the  relative 

intensity  of  those  chosen.  And  it  is  precisely  thisv variation 
in  the  number  and  intensity  of  the  partials  present  in  a  given 

sound  that  accounts  for  differences  of  timbre  or  quality.  We 

may  state  this  fact  as  follows : 

Two  clangs  of  the  same  pitch  must  select  their  partials  from 

the  same  series,  but  may  differ  in  timbre  : 

(1)  through  selecting  different  partials — some  of  the  series 
being  absent  in  either  or  both  sounds  ; 

(2)  through  the  different  intensities  of  the  various  partials, 

should  the  selection  happen  to  be  identical ; 

(3)  through  variation  both  in  selection  and  relative  intensity. 

The  corollary  to  the  above  statement  must  obviously  be 

that  pure  tones,  having  no  partials,  can  only  differ  in  pitch 

and  intensity ;  and  experiment  proves  this  to  be  the  case. 

A  resonator,  constructed  to  vibrate  only  when  it  is  excited  by 
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the  air-vibrations  corresponding  to  its  pitch,  produces  a  simple 
tone,  and  it  is  impossible  to  distinguish  between  resonators  in 

the  matter  of  individual  quality.  Tuning-forks,  again,  produce 
tones  which  are  very  nearly  pure,  and  they  are  almost  exactly 

alike.  The  cooing  of  a  dove,  or  the  soft  '  oo  '  sound  of  a 
well-trained  choir-boy,  are  about  as  near  pure  tones  as  we  can 
get  in  ordinary  life. 

A  vibrating  string  generates  all  the  partial  tones ;  but  the 

ear  is  only  capable  of  recognizing — as  in  all  clangs — a  limited 
number  of  the  lower  ones.  And  since  the  vibrations  of  a 

string  (especially  of  a  large  string  vibrating  with  considerable 

amplitude)  are  easily  visible  to  the  naked  eye,  an  examination 

of  them  forms  a  good  introduction  to  the  more  intricate 

questions  which  arise  later. 

If  you  twitch  the  C  string  of  a  '-cello  with  some  violence,  it 
immediately  vibrates,  like  a  skipping-rope,  between  its  two 
fixed  ends ;  and  these  fixed  ends,  or  points  of  rest,  are  called 
Nodes. 

This  vibration  will,  to  the  eye,  take  the  shape  of  the  double 

curve  of  fig.  23,  where  a  and 
b  are  the  nodes,  the  dotted 

line  ab  the  position  of  rest  ot 

the  string,  and  the  dotted  line 

cd  the  amplitude  of  the  vibra-  FIG.  a  3 
tion.     Before  considering  fig. 

23  any  further  the  student  must  be  reminded  of  two  facts : 

(1)  Although  from  a  sideways  view  the  string  looks  like 

fig.  23,  nevertheless  any  point  on  the  string  is  actually 

describing  a  circle.  Thus  the  string  will  never  touch  or 

pass  through  its  position  of  rest  ab  until  the  moment 

comes  when  it  ceases  to  vibrate  at  all,  and  at  that 

moment  silence  occurs. 

(2)  The  movement  we  are  considering  is  only  the  movement 

of  the  string.  It  must  be  kept  quite  distinct  in  the 

mind  from  any  idea  of  the  movement  which  takes  place 



78  TIMBRE 

in  the  air  as  a  result  of  vibrations  communicated  to  the 

air  by  the  string-. 
The  vibrations  of  a  string,  as  illustrated  in  fig.  23,  will  result 

in  a  sound  whose  pitch  is  the  prime  tone  of  the  note  to  which 

the  string  is  tuned.  That  is  to  say,  if  the  illustration  repre- 

sents the  vibration  of  the  C  string  of  a  'cello,  then  the  sound 
resulting  would  be  C,  a  pure  tone,  and  no  partials  would  be 
present.  But  in  reality  the  string,  in  addition  to  vibrating  as 

in  fig.  23,  is  vibrating1  in  sections  off,  §,  |,  -|,  &c.,  at  the  same 
time,  and  the  vibrations  of  these  sections  are  resulting  in 

sounds  corresponding  to  the  2nd,  3rd,  4th,  5th,  &c.,  partial 
tones  of  the  note  to  which  the  string  is  tuned. 

The  whole  conception  of  a  string  vibrating  in  all  these 
innumerable  sections,  simultaneously  yet  independently,  is  at 
first  so  difficult  that  many  students  abandon  all  attempts  at 

FIG.  24 

comprehending  it.  Possibly  the  following  explanation  may 
make  the  process  a  little  less  bewildering. 

Let  us  suppose  that  seven  people  take  up  their  positions  in 
a  straight  line  at  equal  distances  from  one  another,  and  then 
begin  to  turn,  at  the  same  instant  and  same  pace,  six  exactly 

equal  skipping  ropes.  A  front  yiew  will  give  us  a  picture  of 

six  exactly 'equal  double  curves  (fig.  24).  Instead  of  calling 
these  seven  agents  '  people  ',  let  us  call  them  '  nodes ',  and 
by  taking  away  the  earth  imagine  the  process  to  be  going 
on  in  space. 

Suddenly  four  nodes — «,  b,  c,  d — of  a  superior  species 
appear  and,  taking  the  position  of  nodes  i,  3,  5,  7,  begin,  in 

addition  to  the  movement  already  going  on,  to  turn  the  two- 
rope  sections  between  each  of  them  as  a  single  skipping-rope, 
the  pace  of  such  new  turning  being  half  as  fast  as  the  original 

pace. 
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The  result,  at  the  moment  when  each  swing  is  at  its  highest 
point,  can  be  imagined  from  fig.  25. 

At  this  juncture  three  nodes  of  a  still  higher  species  arrive,  and 

take  their  places  at  the  two  ends  and  the  middle  point  (occu- 
pied in  fig.  25  by  «,  d,  and  4).  They  then  swing  the  ropes  in 

two  sections  at  one-third  the  original  pace,  each  comprising 
three  of  the  original  rope-lengths,  and  the  resultant  curve  of 
these  two  similar  sections  cannot  be  suggested  pictorially, 
though  mathematicians  could  express  it  as  an  equation. 

Finally  two  giant  nodes,  seizing  the  two  ends,  swing  the 

rope  as  a  whole,  at  one-sixth  the  original  pace. 
If  we  could  get  a  front  view  of  the  above  performance  we 

should  see  a  rope  vibrating,  at  the  same  time,  (i)  as  a  whole, 

(2)  in  half  sections,  (3)  in  one-third  sections,  (4)  in  one-sixth 
sections  ;  and  the  result,  if  the  swinging  were  as  rapid  as  the 

d FIG.  25 

swing  of  the  C  string  of  the  'cello,  would  look,  in  spite  of  the 
four  separate  systems  at  work,  like  fig.  23  with  a  blurred 
outline. 

Whether  or  no  the  above  explanation  helps  the  student  to 
realize  the  motion  of  a  string,  the  fact  must  be  grasped  that 
every  string  does  vibrate 

(1)  as  a  whole,  with  nodes  at  each  extremity;  producing 
the  prime  tone  of  the  string  ; 

(2)  in  halves,  with  a  further  node  at  the  centre  of  the  string ; 
producing  the  2nd  partial ; 

(3)  in  thirds,  adding  two  nodes  which  divide  the  string  into 
three  equal  parts  ;  producing  the  3rd  partial ; 

&c.,  &c. 
It  may  be  remarked  here  that  normally  the  partials  decrease 

in  intensity  as  they  rise  in  pitch — i.e.  as  their  distance  from 
the  prime  tone  increases ;  and  though  in  some  special  cases 
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quality  of  tone  is  due  to  the  prominence  of  certain  higher 
partials,  yet  we  can  say  that  very  high  partials  are  practically 
negligible.  Consequently,  in  vibrating  strings,  the  amplitude 
of  swing  of  the  overtones  soon  becomes  so  small  that  its 
influence  on  the  vibration  as  a  whole  may  be  ignored. 

The  vibrations  of  pipes  are  vibrations  in  the  air  itself.  An 

organ  flue-pipe  does  not,  like  a  string,  cause  the  air-vibrations, 
but  only 

(1)  controls  the  rapidity,  by  the  length  of  the  column  of  air 
within  it ; 

(2)  modifies  the  tone  of  the  resultant  sound,  by  its  shape 
and  structure. 

Consequently  the  full  understanding  of  the  action  of  the  air 
must  be  delayed  until  the  Transmission  of  Vibrations  is  dealt 
with.  But  the  actual  influence  of  the  pipe  on  the  vibrations, 

especially  in  the  matters  of  wave-lengths  and  partials,  can  be 
brought  out  by  the  analogy  of  the  skipping-rope  and  its  nodes, 
provided  always  that  the  student  grasps  the  fact  that  the 
curves  drawn  in  the  illustrations  do  not  actually  occur  in  the 

pipes  at  all. 
In  dealing  with  pipes  a  double  curve  is  used  to  represent 

one  complete  vibration  in  the  air. 

FIG.  26 

In  fig.  26  ACE  represents  the  length  of  one  vibration  ;  the 
air  being  compressed  in  the  half  ABC,  rarefied  in  the  half  CDE, 
and  normal  at  the  points  A,  C,  and  E,  which  are  therefore  nodes. 

Open  pipes.  In  open  pipes — i.  e.  pipes  open  at  both  ends — 
the  one  essential  fact  to  be  remembered  is  that  the  ends  cannot 

be  nodes  (i.  e.  places  where  the  air  is  in  a  normal  state)  but 
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must  be  antinodes  (i.  e.  places  where  the  air  is  in  a  state  of 
maximum  compression  or  rarefaction).  The  nodes  in  a 

skipping-rope  are  the  two  ends,  the  antinode  is  the  middle 
point  where  the  amplitude  of  the  swing  is  greatest. 

When,  therefore,  the  air  in  an  open  pipe  is  vibrating — as  it 
always  can — with  only  one  node,  that  node  will  be  in  the 
middle  of  the  pipe  (fig.  27). 

FIG.  27 

In  this  case  the  wave-length  of  the  vibrations  will  be  the 
greatest  that  the  pipe  is  capable  of  producing  ;  and  since  it  is 
clear  from  fig.  27  that  only  half  a  vibration  (see  fig.  26)  is 

created,  it  follows  that  the  wave-length  is  twice  the  length  of 
the  pipe.  And  the  note  produced,  since  the  pipe  cannot  make 

the  wave-length  any  greater,  is  the  prime  tone  of  the  pipe. 
But  an  open  pipe  can  also  contain  an  air-wave  with  two,  or 

three,  or  any  number  of  nodes,  provided  only  that  the  one 
essential  condition — that  the  two  ends  are  antinodes — is  ful- 

filled. Figs.  28  and  29  show  a  pipe  with  two  and  three  nodes 
respectively  : 

>cx:>c 
FIG.  28  FIG.  29 

The  vibrations  illustrated  in  the  above  example  will  clearly 
have  wave-lengths  a  half  and  a  third  as  long,  respectively, 

as  that  in  fig.  27 ;  and  these  are  the  exact  wave-lengths 
required  for  the  second  and  third  partials  of  the  prime  tone. 

Hence  an  open  pipe  can  produce  all  the  partial  tones  of 
the  Harmonic  Chord. 

Stopped  Pipes.  A  stopped  pipe  is  one  which  is  stopped 

at  one  end,  the  other  end  (where  the  '  lip '  is)  being  open. 
When  the  column  of  air  in  the  pipe  is  in  a  state  of  vibration 

the  same  law  holds  as  in  the  case  of  open  pipes :  that  the  open 
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end  of  the  pipe  cannot  be  a  node,  but  must  be  an  antinode. 
The  stopped  end  must  be  a  node,  and  cannot  be  an  antinode. 

Figs.  30,  31,  and  32  illustrate  the  vibration  in  three  stopped 
pipes  of  equal  dimensions  when  one  node  (fig.  30),  two  nodes 
(fig.  31),  and  three  nodes  (fig.  32)  have  formed  themselves. 

It  will  be  seen  that  in  fig.  30  the  actual  length  of  the  air- 
vibrations  will  be  four  times  as  long  as  the  pipe,  since  the 

curve  in  the  pipe  only  represents  one-quarter  of  the  full  curve 
representing  a  whole  vibration  (see  fig.  26).  Thus  the  funda- 

mental note,  or  prime  tone,  of  a  stopped  pipe  is  the  sound 

whose  wave-length  is  four  times  the  length  of  the  pipe,  and 
this  is  the  lowest  note  the  pipe  can  produce,  since  the  air  in 
it  must  have  at  least  one  node  and  one  antinode. 

X  >C 
FIG.  30  FIG.  31  Fia-32 

When  there  are  two  nodes  and  two  antinodes,  as  in  fig.  31, 

the  next  lowest  note  (i.  e.  the  next  longest  wave-length)  will 
be  produced  ;  and  this  is  represented  by  the  curve  which  is 

three-quarters  of  the  whole  vibration -curve  of  fig.  26.  This 
clearly  represents  a  sound  whose  wave-length  is  one-third  of 
the  fundamental ;  since  the  wave-length  of  fig.  3 1 ,  when  com- 

pleted, will  be  one-third  the  completed  wave-length  of  fig.  30. 
And  this  means  that  the  vibration-number  of  the  note  being 
produced  in  fig.  3 1  is  three  times  as  great  as  that  of  the  note 
being  produced  in  fig.  30 :  in  other  words,  that  the  note  of 
fig.  31  is  the  third  partial  of  the  prime  tone. 

Similarly  when,  as  in  fig.  32,  we  introduce  three  nodes  and 

three  antinodes,  the  resulting  note  will  be  one-fifth  the  wave- 
length of  the  prime  tone,  will  have  five  times  the  frequency, 

and  will  be  the  fifth  partial. 

From  the  above  description  the  student  should  grasp  the 
important  fact  that  whereas  the  air  in  an  open  pipe  can  vibrate 
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in  segments  in  such  a  way  that  all  the  partials  are  present  in 

the  resulting-  sound,  a  stopped  pipe  can  only  produce  a  sound 

containing-  partials  i,  3,  5,  7,  9  .... 
Further,  it  should  be  noticed,  as  bearing  on  the  character  of 

the  sounds  produced  by  stopped  pipes,  that  in  the  series  of 

partials  of  the  complete  Harmonic  Chord  — 

(1)  Every  odd  partial  introduces  a  new  note  to  the  chord  ; 

(2)  No   even   partial   introduces   a  new  note,  each  being 

merely  the  octave  above  some  other  partial. 

We  can  now  obtain  the  note  of  an  open  or  stopped  pipe 

when  once  we  know  the  exact  length  of  it. 

Supposing  an  open  pipe  is  8  feet  long,  we  know  the  wave- 
length of  its  prime  tone  will  be  16  feet.  Consequently,  if  we 

take  the  velocity  of  sound  as  1,100  feet  per  second,  the  number 
of  vibrations  of  this  note  will  be 

16          4 

This  figure  is,  as  we  should  expect,  very  close  to  the  lowest 

C  on  the  manuals  of  the  organ  —  a  note  which  is  often  called 

'  8  foot  C  '. 

Had  the  pipe  been  stopped  the  wave-length  would  have 

been  32,  and  the  vibration-number  34!,  giving  the  note  C, 

i.e.  practically  the  bottom  note  of  an  ordinary  pedal-  Bourdon. 
Written  as  formulae,  for  conciseness,  we  get 

noo 

(i)  for  open  pipes :  n*  = 

(2)  for  stopped  pipes :  n  = 
2/    ' 

I  100 

4/ 

Every  organist  is  aware  of  the  fact  that  a  stopped  pipe 

gives  a  note  an  octave  lower  than  an  open  pipe  of  the  same 

length,  but  they  are  often  not  clear  about  the  reason  ;  many 

of  them,  indeed,  imagining  vaguely  that  the  sound  travels 

n  =  number  of  vibrations. 
F  2 
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along  the  pipe  and,  finding  its  exit  barred,  has  to  make  a 

double-journey  by  coming  back.  But  this  is  a  thoroughly 
unscientific  misconception  ;  the  real — and  quite  simple — fact 
being  that  in  an  open  pipe  the  node  of  the  prime  tone  must 
be  in  the  middle,  in  a  stopped  pipe  it  imtst  be  at  the  stopped 
end  of  the  pipe. 

The  sounds  that  can  be  produced  from  rods,  plates,  bells, 
&c.,  are  of  interest  and  importance  to  physicists  rather  than 
to  musicians ;  and  if  the  reader  desires  to  inquire  into  them 

he  will  find  details  in  any  good  book  on  Sound  written  from 
the  scientific  side.  If,  however,  he  should  ever  find  himself 

in  a  physical  laboratory  where  there  is  any  acoustical  apparatus, 
he  is  specially  advised  to  make  some  elementary  experiments 

with  Chladni's  plates.  These  consist  of  thin  pieces  of  metal 
or  glass,  of  square  or  circ^ilar  shape,  with  smooth  surface. 
They  are  fixed  into  a  vice  by  means  of  a  short  rod  welded  to 

them  at  their  centre.  When  a  violin-bow  '  plays '  on  the  edge 
they  vibrate  and  give  quite  a  musical  sound ;  and  if  a  fine  sand 
is  sprinkled  on  the  surface  it  will,  when  the  vibration  begins, 
scamper  all  over  the  plate  and  finally  settle  down,  in  the  most 
beautiful  and  symmetrical  patterns,  along  nodal  lines  where 
the  surface  is  at  rest. 

The  Flute  is  an  ordinary  open  flue-pipe.  The  mouth  forces 

a  column  of  air  against  the  '  lip '  of  the  flute,  producing  a 
tangle  of  vibrations.  The  flute  then  chooses,  according  to  its 
length  or  the  system  of  nodes  arranged  by  the  fingers,  the 

particular  vibration-rate  with  which  it  is  in  sympathy,  and 
reinforces  it. 

All  the  partials  are  possible,  but  it  is  practically  only  the 
prime  tone  and  second  partial  that  can  be  detected. 

The  Clarinet  is  a  pipe  of  uniform  bore,  whose  air-column 

or  node- system  (as  arranged  by  the  fingers)  governs  the  rate 
of  the  vibrations  of  a  beating  reed.  It  is  not  properly  a 
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stopped  pipe,  but  it  is  generally  stated  that  it  produces  a  sound 
comprising  the  odd  partials  only,  and  so  must  be  considered 
as  acting  like  a  stopped  pipe.  The  second  partial  is  certainly 
absent,  but  as  Helmholtz  found  distinct  traces  of  Nos.  6  and 

8,  the  pipe  may  be  considered  as  acting  in  an  irregular 
manner. 

The  Oboe  and  Bassoon  are  open  pipes  of  conical  bore,  and 
their  sounds  comprise  the  whole  of  the  ordinary  partials,  the 
intensity  of  which  decreases  fairly  regularly  as  the  series 
ascends. 

The  usual  Brass  Instruments,  played  by  means  of  cup- 
shaped  mouthpieces  in  which  the  lips  act  as  reeds,  produce 
sounds  containing  all  the  partials ;  and  by  manipulating  the 

lips  we  can  induce  the  tube  to  reinforce  any  one  of  the  over- 
tones (within  limits)  instead  of  the  fundamental  note.  In 

many  of  them,  indeed — such  as  the  Bugle — it  is  quite  easy  to 
produce  an  overtone,  and  exceedingly  difficult  to  sound  the 
fundamental  note  at  all.  Pistons,  by  increasing  the  length  of 

the  air-column,  lower  the  pitch  of  the  prime  tone,  and  so 

provide  us  with  an  entirely  new  set  of  available  overtones. 



PART  V.    TEMPERAMENT 

CHAPTER    XIII 

ON  THE  TWELFTH  ROOT  OF  TWO 

WHEN  you  multiply  a  number  by  itself  you  are  said  to 

4  square '  it,  or  to  raise  it  to  the  power  of  two ;  and  if  you 
multiply  the  result  by  the  original  number,  then  the  original 

number  is  '  cubed  ',  or  raised  to  the  power  of  three. 

Thus  9  may  be  written  as  3^  which  is  read  '  Three  squared ' 
or  '  Three  to  the  power  of  two  ' ;  and  8  may  be  written  23, 
i.e.  '  Two  cubed  '  or  '  Two  to  the  power  of  three  '. 

The  number  which  tells  us  to  what  power  the  principal 
number  is  to  be  raised  is  called  the  Index  (plural  Indices] : 

so  that  in  the  expressions  28  and  39,  the  indices  are  8  and  9. 
Almost  every  one  has  a  working  knowledge  of  the  meaning 
of  indices,  so  long  as  they  are  whole  numbers,  but  when  they 

are  fractions  the  non-mathematical  mind  is  apt  to  be  baffled. 
Fractional  indices,  however,  really  stand  for  something  quite 
easy  to  grasp,  and  it  is  essential  that  any  one  who  aims  at 
a  full  understanding  of  Temperament  should  not  be  puzzled 
by  the  elementary  facts  about  them. 

These  facts  fall  into  three  groups  : 

(i)  If  we  take  any  number  with  any  index — for  simplicity 

let  us  say  32 — and  multiply  it  by  itself  (32  x  32),  the  answer  is 
found  by  adding  the  indices — 32+2  =  3*. 

This  is  also  true  when  the  indices  are  different,  so  long  as 
the  principal  number  is  the  same  : 
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That  this  fact  must  always  hold  good  will  probably  seem 

evident  to  any  one  who  asks  himself  exactly  what  is  meant 

by  22  x  23.  For 
22  =  2  x  2. 

23  =2  X  2  X  2. 

Consequently  22X23  =  2x2x2x2x2  =  25  =  22+3. 
The  algebraical  way  of  expressing  the  above  fact,  which  is 

always  true,  is  by  saying  that 

a*xa*  =  ax+v. 

(2)  If  you  wish  to  take  the  square  root  of  a  number  you 

can  show  it  by  using  the  index  |.  Thus  the  square  root  of 

9  can  be  written  as  92. 

This  ought  to  be  clear  to  any  one  who  realizes  that  91  (nine 
to  the  power  of  one)  is  9.  For 

9  =  g  =  95      =  9  x  92. 

And  if  92"  x  9^  =  9  it  is  obvious  that  92  must  be  the  square 
root  of  9.  L 

Similarly,  the  cube  root  of  2  can\oe  written  2^,  the  fourth 

root  of^:3  becomes^  the  twelfth  rooi\0f  two,  2^. 
•        \  \V 

(3)  The  same^r  ule  applies  to  the  multiplication  of  numbers 
with  fractional  indices  as  to  those  with  whole  numbers.  Thus, 

if  the  square  root  of  4  is  to  be  multiplied  by  itself  : 

4!  x  42  =  42  +  1  =  41  =  4. 

Again,  if  the  cube  root  of  8  is  to  be  multiplied  by  itself: 

8J  x  8s  =  8§  (i.  e.  cube  root  df  82,  which  is  4). 

Similarly,  if  we  multiply  the  twelfth  root  of  2  by  itself  : 

2^2  X  2  ~&  =  2  A  +  T2  =  2  A  =  2S  . 

The  student  should  verify  for  himself  the  results  in  the 

following  table  : 

1  The  twelfth  root  of  2  is  also  written  12V  '2. 
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2i1a  raised  to  the  power  of  2  —  2* i 

3  =  2* 

4  =  21 

5  =  2^ 
=  2? 

7  = 

8  =  2§ 

9  =  2*~
 

10  =  2! 

n  =  sH 
12  =  2 

If  the  elementary  theory  of  indices  is  understood  up  to  this 
point  no  student  should  find  it  difficult  to  realize  the  truth  of 

the  following-  statement  (on  which  the  whole  structure  of 
equal  temperament  is  based)  : 
When  the  number  i  has  been  twelve  times  multiplied  by 

the  twelfth  root  of  2,  the  result  is  2  ;  when  the  number  2  has 

been  so  multiplied  twelve  times  it  becomes  4  ;  the  number  4 
so  multiplied  becomes  8  ;  and  the  numbers  reached  after  each 

process  of  twelve  multiplications  form  the  Geometrical  Pro- 
gression i,  2,  4,  8,  1  6,  &c.,  &c. 

For  the  sake  of  simplicity  in  working  a  method  has  been 
devised  of  measuring  intervals  by  means  of  Cents,  there  being 
1,200  cents  in  an  octave  and  100  in  a  semitone  (in  equal 
temperament). 

The  understanding  of  cents  depends  on  the  recognition  of 
one  outstanding  fact  in  the  table  at  the  head  of  this  page. 
In  the  column  on  the  left  of  the  signs  of  equality  the  terms 
increase  by  means  of  multiplication  ;  whereas  in  the  column 
to  the  right  the  terms,  though  increasing  by  exactly  the  same 
amounts,  show  a  series  of  indices  which  are  in  Arithmetical 
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Progression  -(T%,  T32,  T42,  &c.) — i.  e.  the  increase  is  represented 
by  addition. 

The  greater  simplicity,  in  dealing  with  intervals,  of  being 

able  to  use  addition  instead  of  the  multiplication  and  division 

involved  by  the  vibration-ratios  shown  on  p.  70,  has  led  to 
this  system  of  cents ;  but  the  student  is  warned  that  the 

mathematician,  in  saying  there  are  100  cents  in  a  semitone, 

means  something  different  from  what  he  appears  to  be 

saying.  That  is  to  say,  he  does  not  mean  that  the  distance 

between  C  and  C  sharp  can  be  called  '  i  oo  cents ',  and  the 
distance  between  G  and  G  sharp  called  the  same ;  for  he 

knows  quite  well  the  two  distances  are  different.  But  he 

means  that,  since  we  can  get  C  sharp  and  G  sharp  from  C 

and  G  by  using  the  same  multiplier  in  each  case,  we  can,  by 

thinking  of  indices  and  not  multipliers,  use  addition  instead 

of  multiplication. 

[Readers  who  have  any  elementary  knowledge  of  logarithms  will 
have  guessed  how  this  substitution  is  effected.  A  convenient  unit 
was  chosen  for  the  cent,  such  that  1,200  cents  corresponds  to  log  2. 
If  we  then  wished  to  find  the  number  of  cents  in  a  semitone  of 

equal  temperament  we  can  say  : 

log  (i  X  212)  =  log  i  +  log  21*2 =  0  +  ̂2  log  2 

=  1*2  (I2°°  cents) 
=  100  cents. 

Similarly  for  the  next  semitone  : 

log  (21*2  x  2i12)  =  log  2« 
=  £  log  2 

=  200  cents. 

A  fuller  explanation  is  afforded  by  the  following  extract  from 

Professor  Barton's  Text-book  on  Sound :  1 
'  Since  pitch  depends  upon  frequency  and  interval  upon  ratio  of 

frequencies,  we  have  the  following  important  result.  Let  it  be 

1  Printed  by  kind  permission  of  the  author. 
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required  to  measure  intervals  so  that  the  sum  of  the  measures  of 
component  intervals  shall  be  the  measure  of  the  resultant  interval. 
Then  the  only  measure  possible  is  that  of  taking  for  each  interval 
a  number  proportional  to  the  logarithm  of  the  ratio  of  the  frequencies 
of  the  notes  composing  that  interval.  Thus,  let  the  frequencies  of 
three  notes,  beginning  at  the  highest  and  proceeding  in  order  of 
pitch,  be  Z,  M,  and  N.  Also  let  the  intervals  be  7t  between  L  and 
M,  72  between  M  and  N,  and  /  between  Z  and  N.  Then,  if  each 
interval  be  measured  by  k  times  the  logarithm  of  the  ratio  of 
frequencies,  we  have 

Af 
-~  =  k  (log  jff-log  AO   ....     (2) 

I  =  *log^=A(logZ-logAO    ....    (3) 

But  by  addition  of  (i)  and  (2) ......     (4) 

so  by  (3)  and  (4) 

/=/T+/2    ............       (5) 

For  k  any  convenient  number  could  be  chosen,  as  (5)  shows  that 
the  relation  desired  is  independent  of  it.  But  the  late  Mr.  A.  J. 

Ellis  (the  translator  of  Helmholtz's  Sensations  of  Tone]  has  adopted 
as  the  unit  for  this  logarithmic  measure  the  cent,  1,200  of  which 
make  the  octave.  The  name  cent  is  used  because  100  cents  make 

the  semitone  of  those  instruments  in  which  twelve  equal  semitones 
are  the  intervals  occurring  in  an  octave.  Hence  the  clue  to  reduction 
of  any  intervals  to  these  logarithmic  cents  would  be  found  in  the 
following  equations,  where  Zis  the  interval  in  cents  between  notes 
of  frequencies  M  and  N: 

(6) 

1  200  =  £  log  2         ..........       (7) 

Whence  by  (6)  ̂-(7) 
log  M-  log  N  -. 

/=  1200     —  —  :  -  -  -      .......       (8)'J log  2 
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EQUAL  AND  MEAN-TONE  TEMPERAMENT 

IT  is  quite  easy  to  find,  or  to  write,  a  short  passage  of  music 
in  a  major  key  without  any  accidentals.  Such  a  passage  is 

called  '  diatonic ',  and  can  be  played  on  the  piano  or  organ  in 
the  key  of  C — i.  e.  on  the  white  notes  alone. 
Now  if  we  once  fix  on  the  pitch  of  one  note,  we  can,  by 

using  the  table  of  vibration -fractions  on  p.  70,  tune  every 
white  note  on  a  keyed  instrument  in  perfect  accordance  with 
the  rules  there  systematized ;  and  such  an  instrument  is  said 

to  have  'just ',  '  true ',  or  '  perfect '  intonation.  Let  us  fix  on 

middle  C  (c')  as  a  note  whose  frequency  is  264.  Then  the 
vibration-numbers  of  the  eight  notes  forming  the  major  scale 
upwards  from  middle  C  will  be  as  follows  : 

Tonic  528         that  is  264  x  2 

Leading  note  495  „       „    x  ̂5- 
Superdominant  440  „       „    xf 
Dominant  396  „  „    x  f 
Subdominant  352  „  „    x  f 
Mediant  330  „  „    x| 

Supertonic  297  •„  „    x  | 
Tonic  264 

A  diatonic  passage  played  on  an  instrument  tuned  in  this 
way  produces  an  effect  which  is  a  revelation  of  smoothness  to 
any  one  hearing  it  for  the  first  time.  The  organ  mentioned 
on  p.  71  produces  one  chord  whose  intonation  is  just ;  and  is 
also  fitted  with  pipes  which  will  give  the  same  chord  tuned  in 
the  usual  way.  If,  after  listening  for  some  time  to  the  pure 
chord,  the  tempered  chord  is  sounded,  it  is  so  manifestly  out 
of  tune  that  the  listener  can  only  wonder  that  human  beings 
can  be  found  to  tolerate  it. 
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But  a  very  little  simple  arithmetic  is  needed  to  convince  us 

that  the  tuning  system  suggested  above  is  untenable,  on 

a  keyed  instrument,  when  we  begin  modulating,  however 

beautiful  it  may  be  when  used  for  diatonic  music.  And  its 
un workableness  can  be  seen  from  an  examination  of  three 

intervals :  the  major  second,  major  third,  and  perfect  fifth. 

Major  second.  Let  us  construct  the  first  three  notes  of 

a  major  scale  whose  tonic  has  a  frequency  of  64  (which  is  the 

'  philosophic  pitch  '  of  C).  The  notes  will  be 
E  =  80  (i.  e.  64  x  |) 

D  =  72  (i.e.  64 x  |) 
C  =64. 

If  at  any  time  we  wish  to  modulate  to  the  scale  of  D  (and 

D  minor  would  be  a  very  natural  modulation)  we  shall  want 

a  scale  whose  tonic  and  supertonic  are 
E  =  81  (i.e.  72  x |) 
D  =  72. 

Thus  the  E  which  we  have  tuned  for  the  mediant  of  C  will 

not  be  in  tune  as  the  supertonic  of  D ;  and  though  the  difference 

of  one  vibration  looks  small  on  paper  it  would  be  very  notice- 
able in  practice,  for  F  has  a  frequency  of  85  j,  and  the  difference 

between  80  and  81  is  far  from  negligible  when  we  compare 

these  numbers  with  85^,  however  small  it  may  seem  in  itself. 

In_a  //^gLmajor-  scale,  then,  the  interval  from  tonic  to  supgr- 

tonic,  one  whole  tone,  is  greater^han  thejnteryjd  fromjmp_er- 
tonic  to  mediant,  though  the  latter  is  also  called  a  whole  tone ; 

and  the  former  is  called  a  major  tone,  the  latter  a  minor  tone. 

They  differ  in  the  ratio  8_i_^8pj  and  this  difference,  expressed 

as  a  fraction,  f|>)is  called  a  Comma — sometimes  known  as 
the  Comma  ofDidymus. 

Major  third.  If  we  start  with  C  =  64  we  know  that  E 

will  have  for  its  frequency  64  x  f  =  80. 
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From  E  =  80  we  can  say  with  certainty  that  a  true  G  sharp 

has  a  frequency  of  80  x  f  =  100. 

Similarly  from  G  sharp  we  get  B  sharp  =  100  x  f  =125. 

Now  if  C  =  64  the  octave  higher  must  have  a  frequency  of 

1  28,  yet  we  find  that  three  major  thirds  from  C  give  us  a  note 

B  sharp  with  a  frequency  of  125.  These  two  notes  differ 

in  the  ratio  128:125;  and  this  difference,  expressed  as  a 

fraction  i|f  ,  is  called  an  Enharmonic  Diesis. 

Perfect  Fifth.  If  we  take  a.  note  with  n  vibrations  we 

know  that  the  note  one  ©ctave  higher  has  in  vibrations,  the 

octave  above  that  4/2,  and  so  on  ;  the  various  octaves  having 

vibration-numbers  which  form  the  geometrical  progression  72, 

2«,  472,  8/2,  i6n  .  .  . 

When  we  reach  the  note  seven  octaves  higher  than  our 

original  note,  we  shall  find  its  frequency  to  be  128/2. 

Let  us  suppose  the  lowest  C  on  the  piano  to  have  n  vibra- 

tions, and,  consequently,  the  highest  C  (the  top  note  on  the  ̂  
piano)  to  have  a  frequency  of  128*2, 

Now  it  is  evident,  on  the  piano,  that  we  can  reach  from  the 

lowest  C  to  the  highest,  not  only  by  seven  jumps  of  an  octave 

(multiplying  the  frequency  by  2  at  each  jump),  but  also  by 

twelve  jumps  of  a  perfect  fifth  —  multiplying  the  frequency  by 

f  at  each  jump.  In  this  way  the  vibration-number  of  the  top 
C  will  prove  to  be 

*X(|)« 
Any  one  who  wilt  trouble  to  work  out  this  sum  will  find 

that  it  gives  an  answer  of  nearly  13072:  so  that  the  two  notes 

reached  by  pure  tuning  are  not,  as  they  are  on  the  piano, 
identical. 

The  difference  between  the  two  notes,  one  of  them  (the 

higher)  twelve  intervals  of  a  fifth  from  a  given  note,  the  other 

seven  intervals  of  an  octave,  is  expressed  as  a  vibration  - 

ratio  :  (f)12  :  27,  which,  expressed  as  a  fraction,  is  (about)  -|f  , 
and  this  fraction  is  known  as  the  Comma  of  Pythagoras. 
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If  we  were  to  try  —  and  there  have  been  many  attempts  —  to 
construct  a  keyed  instrument  on  which  we  could  play  in 

perfect  tune  in  any  key,  we  should  find,  by  the  most  modest 

calculations,  that  every  octave  would 

nstruments  with  adjustable  pitch  — 
such  as  the  voice  or  violin  —  can  at  once  provide  us  with  any 
of  our  eighty  notes,  the  ear  of  the  performer  slightly  sharpening 

or  flattening  a  note  whenever  a  new  tonality  asserts  itself. 

For  instance,  a  really  good  choir,  accustomed  to  singing 

without  accompaniment,  would  sing  such  a  passage  as  the 

following  (fig.  33)  with  just  intonation  : 

FIG.  33 

But  should  the  harmony  change,  in  the  last  bar,  so  as  to 

suggest  the  tonality  of  D  minor  (as  in  fig.  34),  then  the 

sopranos  would  beyond  question  alter  the  pitch  of  the  note  E, 

readjusting  it  so  that  the  note  which  they  began  as  the  mediant 

of  C  they  will  leave  as  the  supertonic  of  D  : 

FIG.  34 

On  keyed  instruments,  however,  the  difficulties  of  construc- 

tion and  execution  make  it  impossible  even  to  consider  such 
an  enormous  number  of  notes  to  the  octave  ;  and  the  history 
of  the  keyboard  is  largely  a  history  of  the  attempts  of 
musicians  to  construct  a  feasible  system  by  making  compro- 

mises with  the  intractable  laws  of  nature.  Such  compromises, 
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of  course,  necessarily  took  the  form  of  tampering1  with  true 

intonation,  generally  by  '  splitting*  the  difference '  between 
two  notes  whose  frequencies  differed  by  very  little,  and  then 
making  the  one  sound  do  the  work  of  both  notes. 

Any  interval  thus  deliberately  tuned  contrary  to  the  exact 

vibration-fractions  of  just  intonation  is  a  '  tempered '  interval ; 
and  any  system  of  tuning  which  aims,  by  the  use  of  tempered 

intervals,  at  reducing-  the  number  of  necessary  notes  in  the 

octave,  is  called  a  *  Temperament '. 
Two  such  systems,  Mean-tone  Temperament  and  Equal 

Temperament,  surpass  all  others  in  historical  and  practical 
importance,  and  the  general  principles  on  which  they  rest 
will  now  be  described. 

Mean-tone  Temperament.  Up  to  early  mediaeval  times 
the  chief  system  in  vogue  was  the  Pythagorean,  which  sacrificed 
the  accuracy  of  the  major  third  in  order  to  preserve  that  of 

the  perfect  fifth.  It  required  twenty-seven  notes  to  the  octave. 
Mean-tone  Temperament  was  devised  in  order  that  instruments 
with  fixed  notes  might  be  tuned  on  a  more  practical  system. 

It  must  be  remembered  that  mediaeval  music  was  modal, 

and  that  composers  did  not  require  a  large  number  of  key- 
notes, since  modulation  and  transposition  were  both  kept 

within  very  small  limits.  Consequently  it  was  thought  better 

to  preserve  pure  intonation,  as  far  as  possible,  in  the  keys 

most  commonly  used,  thereby  sacrificing1  it  in  the  unusual 
keys,  even  to  the  extent  of  making  it  impossible  to  use  such 

keys  at  all. 
The  essential  fact  of  this  system  (from  which  fact  the  system 

derives  its  name)  is  that  the  difference  between  the  major  tone 
and  minor  tone  (see  p.  92)  is  abolished.  This  means  that 
the  true  major  third  was  retained,  and  that  the  two  whole 

tones  comprising  it  were  equidistant. 
The  above  fact,  expressed  mathematically,  comes  to  this. 

If  a  note  chosen  as  tonic  has  a  vibration-number  n,  its  mediant 
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will  have  a  frequency  (n  x  £).     The  supertonic,  which  in  just 

intonation  has  a  frequency  (n  x  f  ),  is  given  instead  a  frequency 

of  (n  x  -  —  -  J.     The  advantage  lies  in  this  :  that 

one  whole  tone  from  «  =  n  x  —  - 2 

one  whole  tone  from  n  x  —  *  =  n  x  —  ̂   x  — a  22 

and  #  x  £  is,  as  we  postulated,  the  true  mediant,  and  that  little 

discrepancy  called  the  comma  of  Didymus  (|-J-)  never  shows 
its  head  at  all. 

The  frequencies  of  the  notes  of  the  major  scale,  in  this 
system,  were  as  follows : 

Tonic  2n. 

Leading  note  Dominant  frequency  X  f . 

Superdom.  Subdominant  frequency  x  £. 

Dominant  n  x  f  flattened  a  quarter  of  a  comma. 

Subdom.  2«  x  §  sharpened  a  quarter  of  a  comma. 
Mediant  n  x  f. 

Supertonic          nx  — -. 2 

Tonic ....         n. 

The  above  table  will  be  better  understood  when  it  is 

explained  how,  in  this  system,  the  perfect  fifth  is  found. 

Remembering  that  the  inexorable  condition  of  the  system 

is  that  the  major  thirds  are  true,  we  can  find  from  any  note 

the  exact  pitch  of  its  fifth  partial.  In  fig.  35,  for  instance,  we 

know  that  the  frequency  of  e" ,  assuming  philosophic  pitch, 
will  be  128  x  5  =  640. 
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But  this  interval  (c  to  e")  is  exactly  four  perfect  fifths,  and 
if  we  use  the  vibration-fraction  of  a  fifth  the  note  e"  will  be 

128  x  (f)4  =  128  x  \\  =  \2^8-  x  81, 

whereas  640  =  1 28  x  f  §  =  -1T2^-  x  80. 

Thus  it  appears  that  the  difference  between  the 

two  sounds  that  we  get  for  e"  is  a  difference  between 
8 1  times  something  and  80  times  the  same  thing: 
i.  e.  the  difference  is  one  comma.  And  so,  as  four 

perfect  fifths  give  us  a  note  one  comma  sharp, 
each  fifth,  in  Mean-tone  Temperament,  is  flattened 
by  exactly  a  quarter  of  a  comma. 

We  could,  consequently,  tune  the  scale  of  C,  Mean-tone 
Temperament,  by  the  vibration-fractions  of  (i)   a  tempered 

whole  tone  ( — -Y  (2)  a  true  major  third  (f),  (3)  a  tempered 

fifth  (one  quarter-comma  flat). 
C     .     .     128. 

B     .     .     G  frequency  x  f . 

•A 

A     .     .     G  frequency  x  -  — . 

G     .     .     64  x  f  (flattened  one  quarter -comma). 
F     .     .     i28x| — i.e.  a  fifth  below  128 — (sharpened  one 

quarter-comma). 
E     .     .     64x1. 

D          .     64  x  — -  . 2 

C     .     .     say  64. 

To  the  above  are  added  : 

F  sharp,  a  true  major  third  above  D. 

C  sharp,         „  „  „       A. 

G  sharp,         ,,  „  ,*,        E. 
Bflat,  „  „          below  D. 

E  ftat,  „  ,,  „       G. 
2105  G 
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This  completes  the  i2-note  scale,  and  gives  us  six  keys  in 
which,  except  for  slightly  unsatisfactory  fifths,  we  can  play 

with  ease  and  comfort.  Indeed,  the  error  of  a  quarter-comma 
in  the  fifths  is  really  negligible,  as  it  is  doubtful  whether  any 
human  ear  could  possibly  distinguish  it ;  and  so  in  the 

six  keys  provided  by  the  i2-note  octave  of  Mean-tone 
Temperament  we  can  say  that  we  are  playing  with  just 
intonation. 

The  drawback  to  the  above  system  lies  in  this :  that  although 

music  in  the  keys  provided  for  will  sound  exceptionally  beauti- 

ful, any  attempt  to  go  beyond  those  keys — say  to  E  major  or 
A  flat  major  — is  almost  impossible.  The  notes  D  sharp  and 
A  flat  do  not  exist,  and  in  place  of  them  we  should  be  com- 

pelled to  use  E  flat  and  G  sharp,  and  both  the  latter  notes 

will  be  so  badly  out  of  tune  that  the  effect  of  the  chord  con- 

taining such  a  substitute  is  known  as  a  '  wolf.  The  dis- 
crepancy between  G  sharp  and  A  flat  is  an  enharmonic  diesis, 

for 

frequency  of  G  sharp  —  frequency  of  C  x  f  x  £, 
   v  25 

n  11       •*•  T'B'i 
11  n       *  ~8  (T  i 

frequency  of  A  flat     =  frequency  of  C  x  4  (to  get  major  third below], 

^ 

and  ff,  raised  an  octave,  becomes 

Thus  the  vibration -fraction  of  the  interval  between  A  flat 

and  G  sharp  is  iff,  a  very  noticeable  difference;  and  that 
between  D  sharp  and  E  flat  is  even  more  considerable,  the 

E  flat  being  nearly  two-fifths  of  a  semitone  sharp. 
Old  organs  used  to  be  provided  with  two  extra  black-keys 

for  D  sharp  and  A  flat,  and  such  extra  keys  are  still  to  be 
found  on  the  concertina,  the  only  instrument  in  which  Mean- 
tone  Temperament  survives ;  but  even  then  the  remoter  keys 
were  impossible,  and  many  chords  which,  though  they  involve 
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accidentals,  might  nowadays  almost  be  called  diatonic  were 
barred,  even  in  the  more  usual  keys  for  which  the  instrument 
was  supposed  to  be  adequate. 

If  we  look  on  an  organ  as  an  instrument  for  the  accom- 
paniment of  Church  music  written  in  reasonably  diatonic 

style,  then  it  is  undoubtedly  a  pity  that  the  extraordinary 

sweetness  of  the  Mean -tone  Temperament  has  been  sacrificed. 
But  if  we  consider  the  organ  as  a  solo  instrument,  or  claim 
that  Church  music  should  gradually  absorb  the  complexities 
of  modern  music,  then  we  must  admit  that  a  keyboard  which 

requires  twenty-one  notes  to  the  octave  is  an  impossible 
anachronism. 

Equal  Temperament.  The  world  was  gradually,  though 
reluctantly,  forced  to  the  conclusion  that  it  was  necessary  to 
have  a  keyboard  on  which  it  was  possible  to  play  music  in 

any  key,  and  that  for  this  purpose  an  octave  of  twelve  equi- 
distant semitones  was  the  only  feasible  solution.  And  one  of 

the  many  services  of  J.  S.  Bach  to  music  lies  in  the  fact  that 
the  whole  weight  of  his  influence  was  thrown  into  the  scale 
on  behalf  of  Equal  Temperament,  and  that  the  composition 

of  the  48  stands  out  in  history  as  the  death-blow  to  all  other 
systems  of  tuning. 

The  essential  point  in  Equal  Temperament  being  that  the 

gap  between  any  note  and  its  octave  is  filled  by  eleven  equi- 
distant notes,  it  may  be  well  to  point  out  at  once  the  one  and 

only  difficulty  in  grasping  the  system. 
If  we  are  asked  to  insert,  between  12  and  24,  eleven  other 

numbers  in  such  a  way  that  the  whole  series  of  thirteen  are 

equidistant,  it  is  obvious  that  we  merely  have  to  count,  like 
a  child,  12,  13,  14,  15  ....  21,  22,  23,  24. 

Similarly,  if  we  have  two  pipes  12  inches  and  24  inches 

in  length,  and  have  to  make  a  series  of  thirteen  with  the  same 
difference  between  each  pipe-length,  we  should  make  their 
lengths  12,  13,  14  ....  22,  23,  24  inches. 

But  if  we  are  given  two  organ-pipes  12  inches  and  24  inches 
G  2 
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in  length,  and  are  asked  to  insert  between  them  eleven  pipes 
whose  notes  will  be  equidistant,  in  the  sense  that  the  intervals 
between  them  will  be  the  same,  we  are  faced  by  an  entirely 
different  problem. 

Now  many  people  fail  to  see,  at  first,  why  a  constant  distance, 
which  satisfies  the  former  experiment,  will  not  satisfy  the 
latter  case.  The  reason,  which  is  very  simple,  is  as  follows. 

The  notes  produced  by  the  two  pipes  of  1 2  and  24  inches 
will  be  an  octave  apart.  If  we  could  get  our  eleven  semitones 
by  means  of  pipes  of  12,  13,  14,  15  ....  inches,  then  the  tops 
of  the  four  largest  pipes  would  appear,  as  in  fig.  36,  with 
a  constant  difference : 

24  in. 23  in. 22  in. 21  in. 

FIG.  36 

Similarly,  two  pipes  of  24  and  48  inches  would  give  two 
notes  an  octave  apart,  and  if  we  could  insert  our  eleven  semi- 

tones by  making  a  series  of  equal  additions  to  the  length,  the 

pipes  would  be  24,  26,  28,  30  ...  42,  44,  46,  48  inches  long. 
The  tops  of  the  first  four  would  look  like  fig.  36,  only  the 
difference  between  successive  pipes  would  be  twice  as  much. 

Now  clearly  we  could,  by  placing  the  two  lots  of  pipes 
together,  get  a  series  of  semitones  covering  two  octaves,  and 

the  tops  of  the  five  centre  pipes  would  appear  as  in  fig.  37  : 

26  in. 28  in. 24  in. 23  in. 22  in. 

FIG. 
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A  glance  at  this  illustration  will  show  that,  while  an  increase 

of  an  inch  per  pipe  has  given  us  a  difference  of  a  semitone  in 

pitch  for  a  whole  octave,  we  suddenly  have  to  double  our 

difference  to  two  inches,  and  in  the  third  octave  will  suddenly 

have  to  double  it  again. 

The  same  argument  would  apply  to  vibration-numbers.  If 
we  had  two  notes  whose  frequencies  were  i2n  and  2472  their 

sounds  would  be  an  octave  apart.  Were  it  true  that  we  could 

get  a  series  of  equidistant  semitones  by  the  notes  whose 

frequencies  are  12*2, 13/2,  14*2,  15/2  ....  then  to  get  a  semitone 

above  24/2  we  should  suddenly  be  obliged  to  have  a  note  26?*, 

because  the  next  octave  will  take  us  to  48/2. 

The  truth  is,  of  course,  that  we  have  been  trying  to  do  with 

an  arithmetical  what  can  only  be  done  by  a  geometrical 

progression. 

We  are  given  three  terms  in  a  series,  the  ist,  i3th,  and 

25th,  and  are  required  to  fill  in  the  others. 

Were  these  three  given  terms  1 2,  24,  and  36,  we  should  be 

quite  right  in  locating  it  as  an  arithmetical  progression  and 

merely  filling  in  the  numbers  as  a  child  would  count  them. 

But  since  the  three  given  terms  are  12,  24,  48,  the  series 

must  be  in  geometrical  progression,  and  the  difference  between 

each  term  is  not  caused  by  addition,  but  by  multiplication : 

that  is  to  say,  there  is  not  a  constant  difference  between 

successive  terms,  but  a  constant  ratio. 

The  problem  of  Equal  Temperament  in  its  simplest  possible 

form  is  this :  if  a  note  has  a  frequency  of  i  its  octave  will 

have  a  frequency  of  2.  How  can  we  insert  eleven  terms  in 

geometrical  progression  between  i  and  2  ? 
The  series  will  be  as  follows : 

i ,  /  f\  f\  f\  f\  f\  f\  f\  f\  /10,  /",  /"• 
Now  we  know  by  hypothesis  that  the  thirteenth  term  is  2. 

Therefore 
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and  in  Equal  Temperament,  if  n  represents  the  vibration  - 
number  of  a  note,  then  the  vibration -number  of  the  semitone 
above  it  is 

n  x  2&. 

The  musician  will  be  able  to  think  of  many  problems  which 
arise  from  the  fact  that  in  Equal  Temperament  the  major  third 

is  noticeably  sharpened,  whilst  the  perfect  fifth  is— though 

almost  imperceptibly — flattened. 
When,  for  example,  the  note  C  is  struck  on  the  piano,  a 

trained  ear  will  notice  that  the  fifth  partial  stands  out  very 

clearly.     If  the  note  c     \^    t)       is  held  down  on  the  organ, 

before  long  the  note  e"  \fa       -  will  ring  out,  at  the  pitch  of 

just  intonation,  with  such  insistence  that  it  cannot  be  ignored. 
Should  the  note  e  then  be  added  to  the  c  already  held  down 

the  shock  momentarily  caused  by  its  false  intonation  is  Very 
unpleasant.  Again,  if  the  note  e  is  held  down  the  trained  ear 

will,  after  a  few  moments,  hear  b'  and  g"  sharp  with  the 
utmost  clearness.  Should  the  note  c  then  be  added  below  it, 

it  will  (both  itself  and  its  third  partial  g'}  so  '  curdle '  with  the 
partial- series  of  e  that  the  immediate  impression  is  one  of 
intense  discord. 

The  conclusion  to  be  drawn  is,  that  only  by  deliberately 
corrupting  our  ears  from  childhood  onwards  do  we  ever  come 

to  look  on  the  opening  major  third  of  the  Dead  March — when 
played  on  a  keyed  instrument — as  being  in  any  way  a  concord. 
Luckily  it  seems  to  be  one  of  the  properties  of  buildings 

1  good  for  sound '  that  they  select  from  the  multitudinous 
vibrations  of  a  chord  those  which  are  pleasant,  and  reject  or 

swamp  those  'curdlings'  between  more  or  less  subsidiary 
overtones  before  they  have  had  time  to  establish  definite 

unpleasantness.  Otherwise  the  numerous  '  wolfs '  due  to  the 
clash  between  prime  sounds  equally  tempered  and  overtones 
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in  perfect  tune  would  make  even  the  ordinary  major  chord  on 
a  keyed  instrument  insupportably  offensive. 

One  practical  example  of  the  realization  of  the  dangers 
mentioned  above  will  be  of  interest  to  organists.  Organ- 
builders  are  in  the  habit  of  tuning  mixtures  by  perfect  intona- 

tion, and  consequently  have  in  general  been  wise  enough  to 
avoid  introducing  the  major  third — i.e.  the  5th,  loth,  and 
20th  partial.  The  fifth  from  the  prime  (i.  e.  the  3rd,  6th,  i2th, 
and  24th  partial),  being  almost  imperceptibly  out  of  tune  with 
the  tempered  fifth,  is  used  freely. 

At  this  point  one  other  matter  of  perpetual  interest  to 

musicians  may  be  discussed — the  question  of  the  existence  of 

key -colour,  that  individual  character  distinguishing  one  key 
from  another  which  every  musician  claims  to  feel,  and  few 
will  admit  to  be  an  illusion. 

The  writer,  after  inquiries  long  enough  and  wide  enough 
to  be  called  fairly  exhaustive,  feels  justified  in  claiming  that 

the  differences  in  key-colour  are  attributable,  not  to  any  actual 
difference  between  keys,  but  to  two  groups  of  facts,  one 
mechanical  and  the  other  psychological. 

(i)  Mechanical.  A  diatonic  passage  played  on  the  piano 
in  the  key  of  C  and  then  played  in  the  key  of  D  flat  creates 
two  different  impressions  on  a  listener.  The  sceptic  says  at 
once  that  the  difference  is  due  to  change  of  pitch  alone ;  but 
his  claim  is  upset  by  the  undoubted  fact  that  when  two  pianos 
are  at  hand,  the  C  of  one  tuned  exactly  to  the  D  flat  of  the 

other  (so  that  the  passage  can  be  played  in  the  two  keys  at 
the  same  pitch),  a  trained  musician  can  almost  always  say  with 
certainty  which  performance  employed  only  the  white  notes. 

The  writer  has  never  come  across  any  one  capable  of 

making  the  above  distinction  when  the  organ  takes  the  place 
of  the  piano.  If  the  pitch  of  an  organ  is  a  semitone  sharp 
(as  is  still  often  the  case)  a  listener  has  never  (within  the 
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writer's  experience)  been  known  to  say,  'That  piece  was  in 

D  flat  major,  but  the  performer  was  playing  in  C '.  And  this 
is  exactly  what,  in  the  case  of  the  piano,  many  listeners  can 
say  with  certainty. 

There  seems  to  be  one  explanation  of  the  above  fact,  and 
one  only.  The  black  keys  of  the  piano  are  smaller  and  more 
awkwardly  situated  than  the  white  ones  ;  and,  in  addition, 
their  length  from  the  hammer  is  less.  Hence  the  firmness 
and  strength  of  stroke  on  the  part  of  the  player  are  affected, 
and  also  the  action  of  the  hammer,  by  the  reduction  of  leverage, 
is  modified.  And  these  considerations  do  not  in  any  way 

affect  the  sound  of  the  organ -pipe. 
One  example  should  make  this  clear.  The  two  chords  of 

fig.  38  contain  six  notes : 

FIG.  38 

If  a  machine  were  devised  to  register  the  exact  strength  of 

the  six  hammer-blows  when  these  chords  are  played  on  a 

piano,  it  is  a  safe  prophecy  that  the  sum-strength  of  the  three 
white  notes  would  greatly  exceed  that  of  the  three  black 
ones,  however  careful  the  playing ;  and  the  difference  would 

be  due  to  the  position  of  the  piano-keys  and  the  leverage 
applied  to  the  hammers. 

(2)  Psychological.  There  is  a  subtle  kind  of  mental 
analogy  that  leads  us  to  connect  sharps  with  a  rise  and  flats 

with  a  fall.  If  we  play  the  chord  of  F  major,  and  suddenly 
change  it  to  F  sharp  major,  we  experience  a  feeling  of  lift 
and  exhilaration  which  is  quite  absent  when  we  settle  to 

change  it,  not  to  F  sharp,  but  to  G  flat  major.  Consequently 
all  pianists  and  organists  agree  in  attributing  increasing 

'  brightness  '  to  keys  as  the  number  of  their  sharps  increases, 
and  in  feeling  that  keys  acquire  a  subdued  and  less  exhilarating 
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character  in  proportion  to  the  number  of  their  flats.  But  the 
feeling,  whether  of  exhilaration  or  depression,  is  caused  solely 

by  the  performer's  mental  processes,  and  is  not  inherent  in 
the  key. 

A  striking1  instance  of  this  psychological  bias  was  furnished 
recently  by  a  great  performer,  who  said  that  when  he  played 

Bach's  C  sharp  major  fugue  (from  the  48,  Book  I)  from  an  edition 
in  which  it  was  printed  in  D  flat,  the  whole  composition 
changed  its  character.  Every  musician  will  understand  exactly 
what  was  meant  by  this  statement ;  but  none  the  less  it  is 
clear  that  the  only  change  possible  under  the  conditions 
is  a  mental  change  in  the  performer,  since  the  listener  will 
not  know  whiclj  edition  is  being  used. 

It  is  a  curious  and  little-noticed  fact  that  violinists  entirely 
disagree  with  pianists  in  the  characteristics  they  attribute  to 
keys.  To  them  the  brightest  of  all  keys  is  G  major,  and  they 
will  readily  play  a  passage  to  prove  their  contention.  But  if 
they  are  asked  to  play  the  same  passage,  still  in  G  major,  on  a 
violin  tuned  up  or  down  a  semitone,  they  admit  at  once  that 
the  brightness  is  gone.  So  the  conclusion  is  inevitable  that 

to  violinists  the  questions  of  pitch  and  key-signature  are 
relatively  unimportant,  for  a  passage  in  the  dullest  key  they 

could  mention  becomes  '  bright '  as  soon  as  we  tune  the  open 
strings  to  suit  that  key  as  they  normally  suit  the  key  of  G. 

Finally,  there  can  be  no  'doubt  that  Association  of  Ideas 
must  play  a  part  in  the  matter.  When  it  is  once  generally 

felt  that  any  key  has  a  certain  predominant  characteristic — 
that  E  major,  for  instance,  is  a  cheerful  key — not  only  will  we 
be  apt  to  attribute  cheerfulness  to  music  in  E  major,  but 
composers  will  tend  to  write  cheerful  music  in  that  key  rather 
than  in  others.  And  so  every  new  example  will  accentuate 
our  impression,  until  the  cumulative  effect  of  many  examples 
will  lead  us  to  associate  the  quality  and  the  tonality  as  two 
things  inseparable  in  our  past  experience. 

It  is  unlikely  that  any  dogmatic  statement  will  be  acceptable 
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to  those  who  have  made  up  their  minds  as  to  the  characters  of 
keys.  Yet  it  would  seem  possible  to  say,  without  presumption, 
that  any  character  we  impute  to  a  key  does  not  really  belong 
to  the  sounds  of  a  composition  in  that  key,  but  is  the  result  of 

what  we  ourselves  feel,  owing  to  the  psychological  effect  of 

the  key- signature.  It  is  not  a  matter  of  pitch,  for  those  with 
no  sense  of  absolute  pitch  are  by  no  means  the  least  deter- 

mined in  the  matter ;  and  it  is  not  due  to  the  accidental  fact 

that  the  arrangement  of  black  and  white  piano-keys  affects 
uniformity  of  sound,  since  people  who  do  not  play  the  piano 

feel  key-character  as  strongly  as  those  who  do.  The  general 
verdict  of  a  number  of  musicians,  appealed  to  on  the  matter, 

agreed  in  attributing  '  brightness '  to  F  sharp  major,  and 
'mellowness  '  to  G  flat  major;  and  all  agreed  that,  were  two 
copies  made  of  a  composition,  one  in  each  key,  the  player 
would  feel  one  or  other  of  these  qualities  predominating, 
according  to  the  copy  which  happened  to  confront  his  eyes. 
As  the  instrument  would  produce  exactly  the  same  sounds  in 

either  case  it  seems  as  certain  that  key-character  is  due,  in  the 
case  of  keyed  instruments,  to  psychological  causes  (which 
means  that  it  is  really  purely  imaginary,  imposed  on  a  key  by 
the  player  and  not  inherent  to  the  key),  as  it  is  that,  in  the 
case  of  stringed  instruments,  it  is  due  to  the  influence  of  the 

open  strings  and  their  partials. 



PART  VI.    TRANSMISSION 

CHAPTER   XV 

ON  THE  NATURE  OF  MOTION 

THE  word  Motion,  to  those  who  have  never  had  occasion 

to  consider  it  carefully,  implies  the  movement  of  an  object 
involving  the  change  of  its  position.  When  a  ball  has  been 
thrown  from  one  person  to  another,  when  a  shot  from  a  rifle 
has  hit  a  target,  when  a  man  has  left  his  house  and  arrived  at 
the  station,  the  most  unsophisticated  mind  apprehends  that 
there  has  been  motion,  since  the  ball,  the  bullet,  and  the  man, 

which  began  by  being  in  one  position,  end  by  being  in 
another. 

In  addition,  there  will  be  a  general  recognition,  even 
amongst  elementary  minds,  that  different  forms  of  direct 
motion  possess  different  characteristics.  Every  one  will 
realize  that  the  man  may  walk  to  the  station  at  a  uniform 

pace,  or  may  vary  his  speed — walking  slowly  up  hill  and  fast 
down,  with  an  extra  spurt  at  the  end  on  seeing  that  his  train 

is  signalled ;  most  of  them  know  that  the  pace  of  the  bullet 
decreases  as  it  flies,  and  that  if  it  hits  a  human  being  his 

chance  of  being  hurt  lessens  as  his  distance  from  the  rifle 
increases ;  some  of  them  may  have  discovered  that  the  ball, 

after  reaching  a  certain  height,  curves  downwards  towards  the 
earth  because  of  the  influence  of  gravitation. 

All  such  knowledge,  however,  is  concerned  with  an  aspect 
of  motion  which  involves  the  removal  of  something  solid  from 

one  place  to  another.  And  even  when  people  have  become 
curious  enough  to  propound  questions  on  the  subject,  their 
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riddles  will  usually  take  a  form  implying  the  same  conception : 
such  as  the  familiar  problem  as  to  whether  a  man  is  really 

moving  when  he  walks  along  a  ship's  deck  at  exactly  the 
same  pace  as  that  of  the  ship's  motion,  but  in  the  opposite 
direction. 

Now  the  study  of  Sound  is  really  the  study  of  three  different 

things  which  can  and  ought  to  be  kept  in  water-tight  com- 
partments. They  are : 

(1)  The  study  of  the  cause  or  origin  of  air- vibrations ; 
(2)  The  study  of  the  transmission  of  air-vibrations  from  the 

origin  to  the  ear ; 
(3)  The  study  of  the  mechanism  of  the  ear  which  transmutes 

the  stimulus  received  in  the  shape  of  air-vibrations  into 
the  sensation  of  Sound. 

The  motion  involved  in  the  first  of  these  three  sections  is  of 

the  kind  just  discussed.  That  is  to  say,  when  a  vibrating 

body  vibrates  we  do  actually  have  an  instance  of  something 
solid  changing  rapidly  from  one  position  to  another.  But 
with  this  chapter  we  begin  the  study  of  transmission,  section  (2) 

in  the  above  division,  and  the  transmission  of  sound  is  a  ques- 
tion of  motion  and  of  nothing  else ;  but  it  is  motion  of  a  nature 

almost  entirely  different  from  that  with  which  we  have  hitherto 
been  dealing. 

This  new  conception  of  motion,  called  Apparent  Motion,  is 

not  in  any  way  difficult  to  grasp,  being  merely  a  new  way  of 
looking  at  facts  perfectly  obvious  to  every  one.  But  it  is  so 

imperative  that  a  student,  on  beginning  to  consider  Transmis- 
sion, should  have  a  clear  and  distinct  idea  of  the  change  which 

occurs  at  this  point  in  the  meaning  he  gives  the  word,  that 
the  nature  of  Apparent  Motion  will  now  be  analysed  in  detail. 
Apparent  Motion.  The  easiest  way  to  get  a  preliminary 

idea  of  Apparent  Motion  is  by  means  of  an  example.  Imagine 
a  long  row  of  ladies  of  the  same  height  drawn  up  in  a  straight 
line,  each  one  touching  her  neighbour.  They  have  been  told, 

let  us  suppose,  that  Royalty  is  going  to  drive  past  them,  and 
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that  each  in  turn  must  make  her  curtsy.  If  you  then  take 

up  a  position  behind  them,  at  such  a  distance  that  you  can 

see  the  row  as  an  unbroken  line  without  seeing  that  it  is  com- 

posed of  individuals,  you  will  notice,  as  soon  as  the  curtsying 

begins,  a  depression  sweep  along  the  line  from  one  end  to  the 

other.  Something,  that  is  to  say,  has  moved  along  the  top 

of  the  line  from  left  to  right  or  right  to  left,  whilst  the  only 

actual  movement  of  any  individual  unit  has  been  directly  up 

and  down.  If  we  consider  the  movements  as  taking  place  in 

a  plane  at  right  angles  to  the  earth,  the  direct  motion — i.  e.  the 

various  curtsies — has  been  north  and  south,  whereas  the 
apparent  motion  has  been  east  and  west ;  and  we  have  an 

elementary  example  where  the  motion  of  particles  is  at  right 

angles  to  the  motion  of  the  whole. 

A  second  example,  in  which  the  motion  is  the  same  as  that 

just  described,  is  the  ordinary  sea-wave.  A  series  of  waves 

may  be  seen,  all  clearly  proceeding  in  one  direction,  at  a  time 

when  we  know  that  the  actual  water  does  not  change  its 

position  at  all.  Any  one  drop  of  water  simply  moves  up  and 

down  almost 1  perpendicularly,  whilst  the  wave-form  moves 
onward  over  the  surface ;  and  so  we  have  another  instance 

where  the  direct  motion  is  at  right  angles  to  the  apparent. 

A  third  illustration  of  the  same  thing  in  a  less  obvious  form 

is  furnished  by  a  rope  fixed  at  one  end  and  jerked  up  and 

down  by  some  one  who  holds  the  free  end.  The  result  is 

1  The  student  need  not  worry,  at  this  point,  about  the  word  '  almost ', 
which  is  inserted  owing  to  the  discovery  of  Weber's  Law.  This  established 
the  fact  that  the  actual  path  of  all  particles  on  the  surface  of  the  water  is 
oval ;  and  that  the  oval  approximates  to  a  circle  as  the  depth  of  the  water 
increases.  It  is  consequently  assumed  that  when  the  depth  of  the  water 

is  very  great  the  path  of  each  surface-particle  becomes  circular.  The 

student  should,  of  course,  be  acquainted  with  Weber's  Law,  but  for  the 
purpose  now  in  hand  (i.  e.  the  realization  that  the  forward  movement  of  a 
wave  is,  qua  movement,  quite  distinct  from  the  movement  of  the  drops 
of  water  which  constitute  the  wave)  no  harm  is  done  by  considering  the 

motion  of  surface-particles  to  be  just '  up  and  down ',  like  the  curtsying 
of  the  ladies  in  the  previous  illustration. 
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a  snake-like  curve  in  the  rope,  always  travelling  away  from 
the  holder  and  towards  the  fixed  end.  Yet  a  moment's 
thought  discloses  that  any  one  particle  of  rope  is  travelling 
up  and  down  in  a  line  perpendicular,  for  all  practical  purposes, 

to  the  ground — i.  e.  at  right  angles  to  the  apparent  motion  of 
the  rope-wave. 

One  more  example  is  necessary,  for  the  purpose  of  intro- 
ducing a  new  consideration.  A  field  of  wheat  is  standing,  on 

a  calm  day,  with  all  its  wheat-stalks  perpendicular  to  the 
ground  (fig.  39).  A  gust  of  wind  strikes  the  wheat  on  the 
extreme  edge  of  the  field  and  blows  the  stalks  of  fig.  39  into 
the  shape  of  fig.  40.  A  moment  later  the  stalks  affected 
regain  the  perpendicular  position  by  reason  of  their  elasticity, 

as  the  passing  gust  is  bending  another  set  of  stalks  (fig.  41). 

FIG.  39 FIG.  40 FIG.  41 

In  this  example  the  apparent  motion  is  that  of  a  wave 
travelling  over  the  whole  surface  of  the  corn.  The  direct 
motion  is  that  of  the  corn.  Two  things  should  be  noticed  : 

(1)  The  ears  of  corn  move,  not  at  right  angles  to  the  direc- 
tion of  the  waves,  but  practically  in  the  same  plane. 

But  half  of  their  movement  (i.  e.  when  they  are  regaining 
the  perpendicular)  is  in  the  opposite  direction  to  the 

apparent  motion — i.e.  the  motion  of  the  wave. 
(2)  Any  given  number  of  ears  are  alternately  compressed 

into  a  space  less  than  that  normally  occupied  (as  in 

fig.  40)  and  extended  over  a  space  greater  than  normal 
(as  in  fig.  41). 

Such  apparent  motion  as  has  been  described  is,  it  will 

probably  be  admitted,  not  difficult  to  comprehend.  But  com- 
prehension becomes  less  easy  when  we  find  the  same  process 
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at  work  in  two  other  ways  which,  though  without  thrusting 
themselves  on  our  notice,  are  far  more  frequent. 

The  first  of  these  two  cases  is  when  the  medium  is  invisible. 

In  water-waves,  rope-waves,  and  corn-waves  we  can  see  with 
our  eyes  the  apparent  motion  of  the  medium — the  water,  rope, 
or  corn.  But  when  the  medium  is  air  our  understanding 
lacks  the  help  of  the  eyes. 

The  standard  experiment  is  as  follows :  Take  a  long  tube — 

say  a  pipe  of  two-inch  diameter — and  place  a  lighted  match 
at  one  end,  close  to  the  opening.  If  the  hands  are  sharply 
clapped  close  to  the  opening  at  the  other  end  the  flame  will 
go  out  exactly  as  if  it  had  been  blown. 
Many  people,  on  witnessing  this  experiment,  are  apt  to 

think  that  the  shock  at  the  end  of  the  pipe  drives  the  column 

of  air  throtigk  the  pipe— squeezing  out  so  many  inches  at  the 
other  end  just  as  ointment  is  squeezed  out  of  a  tube — and  that 
these  inches  puff  out  the  flame  in  the  same  way  as  a  column 
of  air  directly  blown  from  the  mouth.  But  as  a  matter  of  fact 
the  displacement  of  air  in  the  tube  is  very  small,  and  the 
extinguishing  has  been  done  by  the  shock  which  has  travelled 
along  the  tube  thro^^gh  the  medium  of  the  air  enclosed  ;  while 
the  actual  movement  of  any  given  particle  of  the  air  has, 

during  a  portion  of  the  time,  been  in  a  direction  directly 
opposite  to  that  in  which  the  shock  has  been  travelling.  The 

particles  of  air  have  been  in  alternate  conditions  of  condensa- 
tion and  rarefaction,  exactly  as  the  ears  of  corn  were  in 

alternate  conditions  of  compression  and  extension,  and  every 
particle  of  air  has,  at  some  moment  between  the  instant  of 

clapping  and  the  instant  of  extinguishing,  been  travelling,  at 
least  once,  away  from  the  flame  and  towards  the  hands. 

The  second  case  is  when  the  medium,  though  visible,  does 
not  perform  any  movement  which  the  eye  can  detect. 

The  stock  example  is  that  of  the  transmission  of  the  motion 

of  a  billiard-ball  through  a  number  of  stationary  balls.  Place 
half  a  dozen  billiard-balls  in  a  row,  touching  each  other,  and 
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all  touching"  the  cushion ;  then  place  a  seventh  ball  a  little 
distance  from  one  end  and  in  the  same  straight  line — i.  e. 
touching  the  same  cushion.  If  the  seventh  ball  is  then  hit  on 

to  the  ball  nearest  to  it— No.  i  of  the  string  of  six — the  result 
will  be  that  it  will  stop  dead,  whilst  the  ball  at  the  other  end 
breaks  away  and  runs  along  by  itself,  leaving  behind  it  a 
stationary  row  of  six  balls,  all  touching  each  other  and  all 
touching  the  cushion. 

The  experiment  needs  a  certain  amount  of  regulation  in 
practice,  since  it  is  not  difficult  to  hit  the  seventh  ball  so  hard 
that  the  whole  string  of  six  balls  is  disturbed.  But  for  our 
purpose  we  may  ignore  everything  except  the  one  fact  that 
it  is  possible  for  the  first  ball,  when  hit  properly,  to  stop  dead 
and  project  its  impetus,  though  five  other  balls  all  apparently 
perfectly  still,  on  to  a  sixth  ball  which,  finding  no  barrier  in 
front  of  it,  starts  on  a  journey  of  its  own. 

To  examine  what  actually  occurs  inside  each  ball  during 
this  transmission  of  energy  would  involve  an  inquiry  into  the 
constitution  of  matter.  All  that  we  need  comprehend  is  that 

the  particles  composing  the  solid  ivory  balls  do,  without 
permanently  changing  their  own  positions  with  regard  to  any 
fixed  point,  manage  to  transmit,  from  one  end  to  the  other  of 
five  of  them,  a  definite  force  which,  on  reaching  the  last  ball, 
is  translated  into  motion. 



CHAPTER    XVI 

ON  CURVES  OF  POSITION 

EVERYBODY  has,  at  some  time  or  other,  taken  part  in  a 
discussion  on  a  question  involving  the  analysis  or  comparison 
of  abstract  things  ;  and  few  can  have  failed  to  realize  that 
the  difficulties  inherent  in  such  discussions  are  due  to  the 
absence  of  standards  of  measurement.  Musicians  will  at  once 

recognize  the  difficulty  as  one  that  arises  in  all  questions  and 
arguments  about  Beauty.  We  may,  perhaps,  feel  fairly  safe 
in  saying  that  we  think  one  composition  more  beautiful  than 

another ;  but  if  we  describe  it  as  '  twice  as  beautiful '  the 
valuation  becomes,  in  the  absence  of  measuring-standards, 
a  mere  figure  of  speech. 

Men  of  science,  with  whom  the  one  essential  condition  of 

progress  is  exactness,  discovered  this  difficulty  at  an  early 
stage  ;  and  they  set  to  work  devising  methods  of  measuring 
such  things  as  motion,  rates  of  increase,  &c.,  graphically 
and  exactly,  and  expressing  the  results  of  the  measurements 
by  means  of  curves.  Their  methods  used  to  be  considered  so 

difficult  to  understand  that  only  the  most  advanced  mathe- 
matical students  at  any  school  in  England  were  introduced  to 

them.  Nowadays,  however,  it  is  recognized  that  the  elements 
of  the  matter  are  very  simple,  and  small  children  are  initiated, 

by  means  of '  graphs  ',  into  the  first  steps.  As  these  steps  are 
absolutely  essential  to  the  understanding  of  any  facts  whatever 
connected  with  the  transmission  of  sound,  the  student  will  be 

wise  to  make  himself  entirely  at  home  with  the  contents  of 
this  chapter,  before  attempting  to  deal  with  their  application 
later  on. 
2105  H 
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The  essential  apparatus  of  a  Curve  of  Position  is  shown  in 

fig.  42.  On  a  piece  of  squared  paper  we  draw  two  lines  at 

right  angles  to  one  another,  which  are  called  Axes.  We  then 
vSettle  that  we  will  register  the  amount  of  one  characteristic 

along  the  horizontal  axis,  the  amount  of  another  along  the 

perpendicular  axis.  Both  axes  are  already  partitioned  into 

equal  sections,  and  we  have  to  fix,  before  starting,  how  much 
of  either  characteristic  one  section  will  stand  for ;  and  the 
amount  so  chosen  will  be  our  unit. 

To  make  the  above  process  clear  beyond  any  possibility  of 

misunderstanding  let  us  take  the  case  of  a  butcher's  bill.  If 
beef  is  a  shilling  a  pound  we  can  register  the  relations  between 

6/-r— r— r-n   r-*/ 

v- 
FIG.  42 

O        1       2      3       4       5      61b. 
FIG.  43 

weight  and  cost  as  follows.  The  horizontal  Axis  is  to  register 

weight,  the  unit  (one  section)  being  i  Ib. :  the  perpendicular 

Axis  is  to  register  price,  the  unit  being  one  shilling.  Starting 

at  O  (the  Origin], \\e.  move  one  section  east  if  we  are  dealing  with 

one  pound,  and  one  section  north  because  the  one  unit  of  weight 

will  cost  one  unit  of  price ;  and  we  register  our  first  point 

(a)  where  the  perpendiculars  from  the  axes  intersect.  Dealing 

in  the  same  way  with  amounts  of  2,  3,  4,  5,  and  6  Ib.,  we 

register  the  points  b,  c,  d,  e,  andy ;  and  by  joining  our  points 

by  the  dotted  line  of  fig.  43  we  find  that  the  '  curve  of  position  ' 
takes  the  form  of  a  straight  line.1 

1  Many  students  will  recognize  the  familiar  '  graph  '  of  their  schooldays. 
Hut  the  word  '  graph  '  has  been  avoided,  since  the  introduction  of  another 
technical  term  might  be  confusing. 
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One  case  of  the  use  of  this  form  of  registering-  is  familiar  to 
every  one — the  temperature-chart.  Here  the  horizontal  axis 
represents  time,  the  unit  being  generally  four  hours — so  that 
the  six  sections  of  fig.  43  would  equal  one  day ;  while  the 
perpendicular  axis  represents  temperature,  each  section  usually 

representing  the  unit  of  one-fifth  of  a  degree  Fahrenheit.  The 

patient's  temperature  is  taken  at  fixed  intervals,  and  marked 
on  the  chart ;  and  when  these  marks  are  joined  we  get  the 

Temperature-curve. 
The  non-mathematician  may  be  puzzled  at  this  point  by 

the  fact  that  the  word  '  curve '  in  both  our  examples  is  used 
in  an  apparently  wrong  sense.  In  fig.  43  our  curve  was 

obviously  a  straight  line,  while  a  temperature-curve  will 
clearly  be  a  zigzag  composed  of  straight  lines.  He  must, 
however,  accept  two  facts  which  cannot  be  discussed  here,  and 
may  rest  assured  that,  though  they  may  seem  to  him  contrary 
to  common  sense,  their  universal  acceptance  as  axioms  by  all 
mathematicians  does  not  really  betray  any  stupidity : 

(a)  All  curves  are  really  composed  of  an  infinite  number 
of  straight  lines,  since  all  motion  from  a  point  of  rest 
must  be  momentarily  in  one  definite  direction. 

(6}  A  straight  line  is  only  a  special  form  of  curve. 
The  same  methods  of  registration  can  be  applied,  with  equal 

simplicity,  to  problems  of  elementary  motion.  If  we  wish  to 

'  plot  out '  the  curve  of  position  for  a  man  walking  at  the 
uniform  rate  of  four  miles  an  hour,  we  draw  our  axes  as 
before,  and  then  fix  our  units  of  time  and  distance.  If  we 

choose  fifteen  minutes  and  one  mile  we  get  the  result  in 
fig.  44  ;  if  we  prefer  one  hour  and  two  miles  we  get  the  result 
in  fig.  45. 

Two  conclusions  should  be  evidently  true  to  any  one  who 
really  understands  what  has  been  said  up  to  this  point : 

(a)  When    motion   is   uniform   the  curve  of  position   is 
invariably  a  straight  line. 

(b)  The  curve  of  position  is  never,  under  any  circumstances, 
H  2 
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intended  to  illustrate  the  path  actually  travelled.  The 

man  in  figs.  44  and  45  may  have  walked  in  a  perfectly 
straight  line,  but  he  may  equally  well  have  been  walking 
round  and  round  the  Albert  Hall.  This  fact  is  of 

essential  importance  in  understanding  the  Associated 
Wave. 
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Up  to  this  point  all  our  examples  have  illustrated  increases 
that  were  uniform,  and  all  our  dotted  lines  have,  in  consequence, 
been  straight.  We  will  now  take  an  instance  where  the  result 
is  otherwise. 

An  engine  starts  from  rest  at  a  station.  Let  us  suppose 
that  it  increases  its  speed  at  a  uniform  rate,  so  that  during  the 

first  minute  it  travels  .100 -yards,  during  the  second  minute 
200  yards,  during  the  third  300  yards,  and  so  on,  until  its 
maximum  speed  is:attained. 

If  we  wish  to  plot  out  its  curve  of  position  we  must  draw 
our  axes  as  before,  and  fix  our  units  of  time  and  distance. 
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Let  us  decide  on  units  of  one  minute  and  one  hundred  yards, 

as  in  fig.  46.  At  the  end  of  one  minute  the  distance  travelled 

is  100  yards,  and  the  point  a  registers  it. 

At  the  end  of  the  second  minute,  during  which  it  has 

travelled  200  yards,  it  will  be  300  yards  from  the  station — 
registered  at  b. 

The  third  minute  will  take  it  600  yards  from  home,  at  £, 

the  fourth  minute  i  ,000  yards,  at  d. 

It  is  clear  that  the  four  points  marked  in  fig.  46  cannot  be 

in  the  same  straight  line;  but  it  may  appear  to  some  that 

from  the  origin  to  «,  from  a  to  £,  b 

to  c,  and  c  to  d  must  be  straight 

lines,  and  consequently  that  the 

result  of  joining  them  is  no  true 
curve.  But  this  is  not  so.  If  a 

straight  line  from  O  to  a  repre- 

sented the  engine's  position,  then  its 
speed  would  be  uniform,  and  we 

could  see  that  it  must  have  done  50 

yards  in  half  a  minute.  But  the 

engine's  speed  was  not  uniform — it 
was  the  increase  of  speed  that  was 

postulated  as  uniform,  and  to  repre- 
sent this  the  dotted  line  of  fig.  46 

must  be  contimwusly  bending,  to 

show  that  at  any  moment  the  speed  is  slightly  greater  than 
at  the  moment  before. 

It  is  so  important  that  this  point  should  be  clearly  under- 
stood that  it  will  be  well  to  analyse  the  movement  of  the 

engine,  together  with  its  curve  of  position,  during  the  first 

minute — i.  e.  the  portion  of  the  curve  from  the  origin  to  a  in 

fig.  46.  Let  fig.  47  represent  the  bottom  left-hand  square  of 
fig.  46  in  an  enlarged  form :  OA  being  one  unit  of  distance 

(100  yards),  OB  one  unit  of  time  (one  minute).  Now,  if 

the  engine  travels  at  a  uniform  speed  of  100  yards  per 
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minute,  with  no  acceleration,  its  curve  of  position  is  obviously 

represented  by  the  diagonal  OP.     Should  we  want  to  find  out 
how  long  it  has  taken  to  reach  a  certain 
point  p,    we   drop   a    perpendicular   pN 
(called  the  ordinate  offl)  to  the  time  axis 
and   measure   ON.      If  it    is  the  distance 

travelled,  and  not  the  time  occupied,  that 
•we  want   to   find    out,   then   we   draw  a 

perpendicular  (called  the  abscissa)  to  the 
distance  axis  and  measure  OM. 

It  is  evident  from  fig.  47  that  so  long  as  the  engine  covers 
one  unit  of  distance  in  one  unit  of  time,  at  a  uniform  speed, 
the  ratio  of  the  ordinate  to  the  abscissa  will  always  be  the 
same  ;  but  that  as  soon  as  we  introduce  the  idea  of  acceleration 

the  ordinate  increases  in  length  quicker  than  the  abscissa, 
and  so  the  same  ratio  continuously  increases  in  value. 

Consequently,  if  we  insert^  in  fifty-nine  places  between  O 
and  P,  giving  the  position  of  the  engine  at  the  end  of  each 
second  (the  position  of  p  at  the  end  of  the  sixtieth  second 

coinciding  with  P),  we  shall  get,  by  joining  the  sixty  jZ$-points 
together,  not  the  straight  line  OP  but  a  curve.  [It  is  true 
this  curve  would,  on  paper,  consist  of  sixty  diminutive  straight 
lines,  but  we  are  not  limited  in  the  number  of  points  we  can 
take,  and  so  we  can  make  these  straight  lines  as  small  as  we 
like ;  and  when  they  are  infinitely  small  the  result  is  a  curve.] 
The  only  curve  with  which  students  of  Acoustics  from 

a  purely  musical  standpoint  must  be  familiar  is  the  one  which 
shows,  in  the  manner  of  those  already  described,  the  rate  of 
increase  and  decrease  of  the  speed  of  the  bob  of  a  pendulum 

during  its  swing.  Suppose  that  we  are  watching  a  child 
swinging  in  the  garden,  and  wish  to  put  on  paper  something 
that  will  represent  the  motion  of  the  child.  It  would  be  quite 
simple  to  draw  a  semicircle  with  its  ends  pointing  upwards 

(fig.  48),  and  to  say  that  O  is  the  fixed  end  of  the  swing,  S  the 
swing  when  at  rest,  and  the  semicircle  the  path  travelled  by 
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the  swing1  when  in  motion.  For,  since  the  length  of  the  swing- 
rope  is  constant  the  swing  must  travel  some  portion  of  the 
arc  ASB.  It  would,  however,  scarcely  be  worth  our  while  to 

make  such  a  diagram,  unless  we  were  teaching  a  class  of  small 
children,  for  every  one  knows,  without  pictorial  illustration, 
that  the  path  of  a  swing  is  circular. 

But  we  know  also  another  fact,  viz.  that  the  swing  is 

momentarily  at  rest  at  B,  falls  with  ever-increasing  speed  to 
S,  where  its  maximum  speed  occurs,  and  then  rises  with  ever- 
diminishing  speed  to  its  opposite  position  of  rest  at  A ;  and 
we  may  desire  to  put  on  paper  something  which  will  show  the 
variation  in  the  rate  at  which  the  child  moves. 

FIG.  48 

Fro.  4  9 

The  problem  may  be  stated  in  another,  and  possibly  simpler, 
way.  Let  fig.  49  represent  a  swing  exactly  similar  to  that  in 

fig.  48,  and  suppose  that  the  sun  is  shining  immediately  over- 
head. As  the  child  swings  from  A  to  B  a  shadow  will  be 

thrown  on  the  ground  from  X  to  Y.  This  shadow  will 

begin  by  moving  slowly  from  X,  but  at  a  greatly  increasing 
pace,  until  the  child  reaches  S,  the  point  of  maximum 
speed ;  and  then  the  shadow  will  travel  for  the  second  half 
of  its  journey  at  a  pace  exactly  the  reverse  of  that  of  the 
first  half.  The  motion  of  the  shadow  is  known  as  simple 
harmonic  motion ;  and  the  curve  required  is  one  which  will 

represent  the  variation  in  speed. 
This  curve  (fig.  50)  is  known  as  the  curve  of  sines,  and  its 

shape  is  exactly  what  would  be  drawn  by  the  shadow  (if  we 
can  imagine  the  shadow  being  provided  with  a  pencil)  on 
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a  piece  of  paper  drawn  across  its  path  at  a  uniform  rate  and 

at  right  angles  to  the  direction  of  its  motion. 

FIG. 

In  the  above  curve 

AE  is  the  length  ; 

ABC  is  the  crest,  CDE  the  trough  ; 

B£  is  the  height  of  the  crest,  Dd  the  depth  of  the  trough, 

and  they  are  equal ; 

AC  is  the  length  of  the  crest,  CE  the  length  of  the  trough, 

and  they  are  equal ; 

B<$  (or  Dd)  is  the  amplitude  of  the  curve. 

[Readers  whose  mathematics  includes  a  knowledge  of  the  meaning 
of  the  trigonometrical  term  sine  may  get  a  firmer  grasp  of  the  curve 
of  simple  harmonic  motion  from  the  following  explanation. 

If  we  suppose  that  in  fig.  5 1  the  point  P  is  travelling  at  a  uniform 

speed  from  A  to  B,  then  its  distance  from  the  diameter  AOC  is 
always  represented  by  the  perpendicular  p/.  Now  the  length  of 
fp  compared  to  OP  (which,  being  a  radius,  is  constant)  is  a  ratio 

vp 

depending   

on   
the   

angle   
POA,  

—    
being,  

in  fact,  
the  

sine  
of  that 

angle  (sometimes  it   is   called  the  sine  of  the  arc  AP).      Since  P 
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moves  at  a  uniform  speed  we  may  consider  the  arc  AP  proportional 

to  the  time,  and  then  p/  (which  is  always  equal  to  the  distance  of  s 

from  the  centre  if  PS  be  drawn  perpendicular  to  BO)  will  represent, 

by  its  increase  and  decrease,  the  variation  of  pace  in  the  movement 

of  s  along  OB  when  DOB  corresponds  to  the  line  XY  in  fig.  49  and 

s  in  the  shadow  travelling  along  it. 

This  movement  of  s  along  DOB  exactly  corresponds  with  the 

motion  of  a  single  particle  of  air  when  the  mass  of  air  is  excited  by 

a  vibrating  body  into  alternate  states  of  condensation  and  rarefaction  ; 

and  those  who  are  able  to  grasp  the  above  description  of  a  circular 

function  will  be  able  to  feel  that  their  grasp  of  the  process  is  founded 

on  mathematical  truth.] 



CHAPTER   XVII 

ON  THE  ASSOCIATED  WAVE 

WHEN  a  vibrating  body  is  in  motion  it  communicates  its 
vibrations  to  the  air,  which,  in  its  turn,  communicates  them  to 

our  ears ;  and  we  say  that  the  vibrations  have  been  '  trans- 

mitted' through  the  air  from  the  vibrating  body  to  the  listener. 
We  have  now  to  examine  what  happens  in  the  air  itself  whilst 
vibrations  are  in  course  of  transmission. 

It  has  already  been  stated  that  air  has  a  power  of  expansion 
and  contraction  possessed  by  few  other  substances.  If  we 

pour  half  a  pint  of  water  into  a  pint-pot  the  pot  is  only  half 
filled.  But  if  we  make  a  vacuum  in  the  pot  and  let  in  half 

a  pint  of  air,  the  air  fills  the  pot ';  though  in  expanding  itself 
to  twice  its  normal  volume  it  halves  its  density.1  In  the  same 
way  a  pint  of  air  can  be  compressed  into  a  half-pint  receptacle, 
in  which  case  the  density  of  the  air  will  be  doubled.  And 
when  the  density  is  diminished  we  say  the  air  is  in  a  state  of 
rarefaction,  when  it  is  increased^  in  a  state  of  condensation. 

It  would  be  possible,  by  way  of  illustration,  to  construct  an 

air-tight  telescope  in  which  the  air  was  in  a  normal  condition 
when  the  telescope  was  exactly  half-way  between  its  extreme 
and  its  shortest  length.  Then,  by  alternately  opening  and 
closing  the  telescope,  we  should  throw  the  air  into  alternate 
states  of  rarefaction  and  condensation;  and  the  amount  of 

rarefaction  when  the  telescope  was  fully  extended  would  be 
equal  to  the  amount  of  condensation  when  it  was  closed  tight, 
since  each  state  would  be  equally  removed  from  the  normal. 

It  is  possible  to  give  some  idea  of  these  alternate  states  of 

1  See  '  density  '  on  p.  13. 
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condensation  and  rarefaction  by  means  of  shading.  If  we  take 

a  sectional  view  of  the  air  between  a  vibrating"  body  and  a 
listener  we  can  imagine  it  as  in  fig.  52,  where  the  dark  lines 

signify  compression  and  the  lighter  intervening  spaces 
rarefaction  at  a  particular  moment. 

It  must  be  understood  that  the  movement  in  the  air  illus- 

trated in  fig.  52  is  not  really  circular  but  spherical.  We 

could  draw  arcs  from  the  tuning-fork  to  reach  ears  on  the 
west,  north,  and  south,  as  well  as  the  one  on  the  east ;  but  the 

vibrations  would  also  reach  ears  on  this  side  of  the  paper  and 
on  the  other  side  as  well.  The  illustration  shows  in  two 

dimensions  a  process  which  really  involves  three,  but  since 

exactly  the  same  thing  is  happening  in  any  straight  line  from 

the  origin  of  a  sound— along  any  radius,  that  is,  from  the 
vibrating  body  to  the  circumference  of  its  sphere  of  vibra- 

tions— we  can  still  further  simplify  the  matter  by  reducing  the 
two  dimensions  of  fig.  52  to  one,  and  consider  merely  what 
happens  ̂ long  any  straight  line  between  the  origin  of  sound 
and  the  ear. 

If  the  last  paragraph  is  not  clear  the  student  may  find  help  in 

the  following  analogy.  Fig.  52,  if  completed,  would  show  a  series 

of  circles.  But  for  a  true  picture  of  air-vibrations — since  they  spread 

equally  in  all  directions — we  should  imagine  a  series  "of  footballs  of 
different  sizes,  one  outside  the  other.  We  want  to  find  out  what 

is  happening  inside  between  the  centre  and  the  outmost  bladder. 

But  what  is  happening  between  the  centre  and  any  of  a  hundred 

different  points  on  the  outside  bladder  is  exactly  the  same :  where- 
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fore  if  we  examine  the  straight  line  between  the  centre  and  any  one 
point  on  the  outside  we  shall  get  a  true  conception  of  the  whole 
process,  and  can  ignore  the  fact  that  it  is  a  spherical  process 
altogether. 

More  obviously  still,  when  a  man  on  a  platform  sings  a  note  the 

air-vibrations  start  on  their  journey  in  all  directions  at  once,  i.e. 

spherically.  But  between  the  singer's  mouth  and  the  ears  of  the 
various  listeners  are  a  number  of  straight  lines,  and  the  air  is 
doing  exactly  the  same  thing  along  all  of  them.  So  it  is  only 
necessary  to  examine  one  of  these  lines  to  conceive  the  whole 
system. 

The  object  of  the  Associated  Wave  is  to  represent  to  the 
eye  the  process  of  rarefaction  and  condensation  of  the  air 
along  such  a  line. 

A  glance  at  fig.  52  will  show  that  a  point  may  be  taken, 
half-way  between  the  extremes  of  condensation  and  rarefaction, 
where  the  state  of  the  air  is  normal.  It  then  becomes  (i)  more 
and  more  rarefied  until  it  reaches  the  maximum  of  rarefaction ; 

then  (2)  becomes  less  and  less  rarefied  until  it  again  reaches 
normal ;  next  (3)  it  becomes  more  and  more  condensed  until 
it  reaches  its  maximum  of  condensation ;  finally  (4)  it  again 
proceeds  to  normal. 

It  is  an  established  fact — and  no  musical  student  need  enter 

into  the  calculations  which  lead  up  to  it — that  the  rates  of 
increase  and  decrease  of  rarefaction  and  condensation  just 

described  are  exactly  proportional  to  the  rates  of  increase  and 
decrease  of  pace  in  the  shadow  thrown  by  the  swing  along  the 
line  XY  in  fig.  49,  p.  119. 

Hence  the  wave-curve  illustrative  of  the  rate  of  increase 

and  decrease  of  pace  of  a  pendulum  (fig.  50,  p.  1 25)  is  also  the 
curve  which  shows  pictorially  the  process  of  rarefaction  and 
condensation  in  the  air  caused  by  a  pure  musical  sound  ;  and 
this  curve  is  called  the  Associated  Wave. 

Certain  facts  must  be  remembered  about  this  curve  and  its 

proportions,  but  the  most  important  of  all  is  the  fact  that  no 
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motion  whatever  takes  place  in  the  air  (or  anywhere  else) 

remotely  resembling1  the  shape  of  the  curve.  The  air  does 
not  vibrate  in  curves  at  all,  but  in  throbs,  backwards  and 

forwards  along  a  straight  line  < — >  ;  and  the  sole  object  of 
the  curve  (as  of  all  curves  of  position)  is,  not  to  draw  a  picture 

of  what  happens,  but  to  give  a  graphic  representation  of 

those  variations  in  its  density,  due  to  rarefaction  and  condensa- 

tion, which  cannot  be  exactly  shown  in  any  other  way. 

(a)  In  fig.  50  the  length  of  the  wave  is  AE,  and  this  governs 

the  pitch.  If  we  find  the  length  is  10  feet,  then,  taking  the 

velocity  of  sound  at  1,100  feet  per  second,  the  frequency  of 

the  note  is  1xj-»  or  no  vibrations  per  second.  Conversely, 
the  note  whose  frequency  is  260  will  have  a  wave-length  of 
1  1  0  0         55 --- 

Fig.  50  (reproduced). 

(6}  The  crest  ABC  corresponds  to  the  condensation,  the 

trough  CDE  to  the  rarefaction  of  the  air.  The  height  of  crest 

and  trough  are  measured  by  the  amplitudes  Bt>  and  D^,  and 

these,  in  the  case  of  pure  musical  sounds,  will  always  be  equal 

to  each  other ;  for  since  the  air  in  any  wave-length  is  a  given 
quantity  any  condensation  of  it  in  the  half  AC  involves  a 

compensating  rarefaction  in  the  half  CE. 

(c)  The  amplitude  of  the  wave  corresponds  to  the  intensity 

of  the  sound  it  represents.  A  sound  increases  in  volume  in 

exact  proportion  to  the  condensation  of  the  air  at  its  maximum 

point;  and  the  sole  duty  of  the  line  B&  is  to  register  the 

maximum  density. 
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[Readers  who  like  to  reduce  their  knowledge  to  formulae 

may  be  interested  in  the  following  mathematical  statement. 
The  vibration-number  of  a  note  is  found  when  we  divide 

unity  by  the  period  required  for  one  complete  vibration.  If 

one  vibration  takes  one-hundredth  of  a  second  the  frequency 
of  the  note  is  i  divided  by  T£Q,  i.e.  100.  If  we  call  the  frequency 

/  and  the  period  p,  we  get  the  formula 

Again,  since  the  velocity  of  sound  is  always  equal  to 

wave-length     , 
we  may  say  that  the  velocity  of  a  wave  is  -  ^H~  ' 

a  period  means  simply  the  time  which  a  vibrating  body  needs 

for  one  complete  swing  ;  i.  e.  the  time  which  a  complete 

vibration  takes  to  pass  through  the  air.  Calling  wave-length 

/  and  velocity  z>,  we  get  another  formula  : 

/       ,      i  ,  , 

V=p  =  l*p  .......     &' 

Substituting  they  of  (i)  for  the  -  of  (2),  we  get 

v  =  lf       .....        .        -        .     (3)- 

For  example,  the  vibration  whose  period  is  T^  second  has 

a  frequency  of  i  oo,  and  if  we  take  the  velocity  of  sound  as 

i,  TOO  feet  per  second  we  know  from  (3)  that  noo  =  ioo/,  and 

therefore  the  wave-length  is  1  1  feet.] 

The  student  must  beware  of  making  one  very  common 

mistake  in  his  conception  of  the  Associated  Wave.  The 

height  of  the  curve  at  any  point  does  not  represent  the  state 

of  the  air  immediately  (i.e.  perpendicularly]  iinder  that 

point. 
Fig.  53  represents  half  the  associated  wave  of  a  simple 

vibration.  It  is  often  carelessly  assumed  that  the  height  pp^- 
corresponds  to  the  amount  of  condensation  at  the  point  p. 
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Now  p  is  a  position  in  the  normal  line,  occupying  the  place 
proper  to  it  when  the  air  is  at  rest.     If  fig.  53  represented 

a  water-wave  the  particle  of  water  at  p  would  travel  upwards 

tOjZ*1  and  back  again  to  p  during 
the  time  that  it  formed  part  of  the 
crest  of  the  wave.    Similarly,  when 
the  air  is  in  motion  p  moves  along 

AB  to  the  point  pz,  the   same  dis- 
tance away  from  p  as  p1.     Thus, 

wherever  we  take  p1  on  the  crest, 

it  represents  the  condensation  at  a  point  p1*,  to  be  found  by 
making  pp*  =pp^ ;  and  the  same  is  true  of  the  trough, 
remembering  that  p*  will  be  on  the  other  side  of  p. 

The  student  will  probably  understand  by  now  the  statement 
that  the  Associated  Wave  expresses  by  transverse  means 
vibrations  in  the  air  which  are  really  longitudinal. 

We  have  now  to  consider  the  character  of  the  Associated 

Wave  when  the  vibrations  are  not  those  of  a  simple  musical 
sound. 

The  study  of  partial  tones  teaches  us  that  a  Clang  is  always 
composed  of  a  prime  with  overtones,  all  of  them,  taken 

separately,  simple  tones.1  Let  us  take  a  very  simple  Clang — 
one  in  which  the  prime  is  accompanied  by  its  first  overtone 
only.  The  frequency  of  the  prime  will  be  half  that  of  its 

overtone,  and  consequently  its  wave-length  will  be  twice  as 
great.  So  that  we  know  there  must  be,  between  our  ears 

and  the  origin  of  sound,  two  sets  of  vibrations  whose  fre- 
quencies and  wave-lengths  are  in  the  ratio  i :  2.  If  AB  (fig.  54) 

is  the  wave-length  of  the  prime  then  the  associated  wave  of 
that  note  will  exactly  cover  its  length  ;  and  if  CD  (fig.  55)  is 
the  same  length,  it  will  carry  two  associated  waves  of  the  first 
overtone. 

The  problem  before  us  is  this.     What  happens  in  the  air 

1  See  Fourier's  Theorem,  p.  74. 
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when  these  two  sets  of  vibrations,  of  which  figs.  54  and  55 

are  the  Associated  Waves,  are  being  transmitted  simul- 

taneously ?  The  answer  is  that  they  combine  into  one  com- 

FIG.  54 

55 

plex  vibration-system,  whose  associated  wave  is  a  combination 
of  the  two  waves  drawn  above. 

This  combination-wave  is  found  by  drawing  both  simple 

waves  to  the  same  normal-line  (or  axis),  and  combining  the 
ordinates  at  any  point.  If  both  ordinates  are  on  the  same  side 

of  the  axis  they  are  added  \  if  they  are  on  different  sides  the 

lesser  is  subtracted  from  the  greater. 

For  example,  fig.  56  shows  one  complete  wave  and  the 
crest  of  a  second  wave  : 

At  the  point  a  the  ordinate  of  the  longer  wave  is  aal,  the 
ordinate  of  the  shorter  aa2 ;  both  ordinates  are  on  the  same 

side  of  the  axis,  and  so  the  amplitude  of  the  combination -wave 

(the  dotted  line)  will  be  the  sum  of  them. 

At  the  point  b  the  two  ordinates  &51,  <5£2,  are  on  different 
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sides  of  the  axis,  consequently  the  amplitude  of  the  co  nbina- 

tion-wave  will  be  the  difference  between  them. 

What  is  done  in  fig.  56  with  two  vibration-systems  can 
obviously  be  done  with  a  thousand  ;  for  any  two  simple  waves 

can  be  combined  into  one  resultant,  and  any  two  resultants 

combined  in  the  same  way. 

A  certain  number  of  side-issues  arise,  in  considering1  the 
question  of  Transmission,  of  which  the  most  important  are  the 

following : 

(a)  The  velocity  of  sound  in  air,  though  affected  (see  p.  16) 

by  a  rise  or  fall  of  temperature,  is  not  affected  by  atmospheric 

pressure.      If  the   temperature   is   constant    the   velocity   is 

independent  of  the  barometer. 

(b)  Variations  in  pitch  and  intensity,  though  they  affect  the 

distance  at  which  a  sound  is  audible,  do  not  affect  the  velocity 
at  which  it  travels. 

(c)  The  pitch  of  sound  is  affected  by  any  violent  movement 

of  the  vibrating  body  to  or  from  the  listener.     No  musician 

can  have  failed  to  notice  that  a  motor-horn  drops  in  pitch  as 

it  passes  him.     The  reason  (called  Doppler's  Principle)  is  that 
as  the  car  travels  towards  us  each  vibration,  instead  of  reaching 

the  ear  at  its  proper  distance  from  the  previous  one,  is  forced 

a  little  nearer  to  it.     Thus  the  wave-lengths  are  shortened 
and  the  pitch  raised  ;  the  reverse  taking  place  the  instant  the 

car  has  passed  us.     Neither  note  is  the  true  pitch  of  the  horn, 

which  lies  half-way  between  the  two  notes. 

(d)  The  effect  of  wind  on  sound-waves  is  curious.     It  does 

not  affect  their  pitch,  but  considerably  alters  their  velocity 

and  range.     If  the  surface  of  the  earth  were  perfectly  smooth 

and  without  interruption  a  favourable  wind  would  carry  a 
sound  both  farther  and  quicker  than  an  adverse  one,  which 

latter  tends  to  disperse  and  destroy  vibrations.     As  things 

are,  however,  the   wind  travels  at  a  slower  pace  near  the 

earth  than  higher  up,  owing  to  obstacles  and  friction.     Con- 

sequently sound  is  refracted,  since  in  a  favourable  wind   it 
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will  travel  faster  at  a  Httle  height  than  near  the  ground,  and 
the  plane  of  its  movement  will  be  tilted  towards  the  earth. 
In  an  adverse  wind  the  lower  vibrations,  meeting  with  less 
resistance,  travel  faster  than  the  higher  ones  and  the  plane  is 

tilted  up,  with  the  result  that  the  whole  vibration -system  is 
directed  into  space. 

On  a  sultry  day  refraction  occurs  in  the  same  manner,  for 
the  air  near  the  earth  becomes  hotter  than  that  above ;  it 

expands,  diminishes  in  density,  and  causes  sound  to  travel  faster 
near  the  ground.  At  night  the  earth  cools,  and  the  lower  air 
becomes  in  turn  more  dense  than  the  upper,  so  that  a  travelling 

vibration-system  is  directed  towards  the  ground  instead  of,  as 
in  the  heat  of  the  day,  towards  space. 



CHAPTER   XVIII 

COMBINATION  TONES 

WHEN  we  listen  to  a  single  Clang  we  know  that  we  are 
listening  to  a  group  of  sounds  varying  in  pitch.  And  even  if 
the  prime  tone  is  the  only  one  recognizable  by  the  unassisted 
ear,  we  can  prove  the  presence  of  other  sounds  by  means  of 
resonators. 

When  we  listen  to  two  sounds  of  different  pitch  another 

phenomenon  presents  itself.  We  can  hear — or  prove  the 
presence  of — sounds  which  are  not  to  be  heard  when  either 
note  is  listened  to  alone. 

Such  sounds  are  called  Combination  or  Resultant  Tones 

(occasionally  known  as  Tartini's  Harmonics],  and  the  notes 
which  cause  them  are  called  the  Generators.1 

There  are  two  kinds  of  Combination  Tones,  called  Differ- 
ential and  Summational  Tones. 

Differential  Tones.  The  vibration-number  of  a  Differential 

is  found  by  the  simple  process  of  subtracting  the  frequency  of 
the  lower  generator  from  that  of  the  higher.  Thus  if  two 
notes  have  frequencies  of  200  and  150  they  will,  when  sounding 
simultaneously,  produce  a  differential  whose  frequency  is  50. 

It  is  usual,  and  simpler,  to  find  differentials  from*  a  vibration- 
fraction  rather  than  from  the  actual  frequencies.  In  the  above 

case,  for  instance,  the  vibration-fraction  of  the  two  generators  must 

.be  ff§  =  f,  and  the  differential  will  be  4  —  3  =  1.  Its  pitch, 

1  Students  who  desire  a  physical  explanation  of  the  occurrence  of 
Combination  Tones  are  referred  to  any  standard  work  on  Acoustics. 

Only  the  facts  which  seem  important  from  a  musician's  standpoint  are 
dealt  with  here. 

I  2 
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accordingly,  will  be  that  of  the  first  partial  in  the  series  of  which  the 

generators  are  the  third  and  fourth  partials. 

Fig.  57  shows  the  differentials  of  the  concords  within  the 

octave.  The  upper  stave  gives  the  generators,  with  their 

vibration-fraction  overhead  ;  the  lower  stave  shows  the  differ- 

543 
45? !     * 

—y    
—  j-j- 

fin 
-*tg- 

-^- -&- Kf  ) -0- 

-©- -e>- 
1 —  !- i i 3 2 

•  —  ©— 
1^ 

D 
FIG.  57 

entials,  the  numbers  over  them  (being  numerator  of  the  frac- 
tion minus  denominator)  showing  the  place  of  the  differentials 

in  a  series  of  partials  which  would  include  all  three  notes. 

The  Harmonic  Chord  is  of  the  greatest  mental  assistance  in 

finding  the  pitch  of  a  differential,  and  whenever  the  numerator 

minus  denominator  happens  to  equal  one  the  pitch  of  the 

differential  coincides  with  that  of  the  prime  tone  ;  but  the 

student  must  beware  of  thinking  of  the  two  as  being  always 

the  same.  Should  we,  for  instance,  take  an 

interval  greater  than  an  octave,  the  differential 

falls  between  the  generators.  The  interval  in 

fig.  58  has  for  its  vibration -fraction  f ,  and  will 

generate  a  differential  5  —  2  =3.  The  pitch  of  this  will  be 
the  G  between  the  two  generators,  and  this  accounts  for  the 

fact  that  these  two  generators  will  always  suggest  to  us  the 

chord  of  C  major  (and  not  A  minor),  since,  without  knowing 

it,  we  are  also  listening  to  the  note  G. 

A  similar  case  has  occurred  within  the  writer's  experience. 
The  double-hooter  at  a  neighbouring  factory  sounds  a  strong 

major  6th — say  the  G  and  E  of  fig.  58.  When  listeners  are 
asked  what  key  the  interval  suggests  the  invariable  reply  is 

1  C  major ',  never  '  E  minor  '.  The  reason  is  that  these  two 

-&• 
FIG.  58 
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notes,  whose  vibration-fraction  is  f ,  generate  the  differential 
5-3  =  2,  which  is  middle  C.  But  only  very  occasionally 
does  a  listener  admit  that  he  can  hear  the  differential,  though 
it  is  quite  plain  to  any  ear  accustomed  to  listening  for  such 
things. 

It  is  difficult  to  hear  differentials  when  experimenting  on 
the  piano,  partly  because  of  equal  temperament,  partly  because 

the  tone  of  the  piano  is  evanescent.  But  if  a  major  6th — such 
as  middle  C  and  the  A  above  it — is  struck  loudly  five 
or  six  times  the  F  below  can  be  heard  faintly.  And  if, 

during  the  striking,  the  F-key  has  been  depressed,  the  free 
strings  will  slightly  reinforce  the  differential. 

On  the  harmonium  the  sustained  tone  makes  experiments 

more  successful ;  and  the  concertina,  with  the  double  advan- 

tage of  sustained  tone  and  Mean-tone  Temperament,  is  better 
still.  But  as  only  one  really  successful  experiment  is  necessary 
to  convince  a  sceptic  it  is  probably  most  convenient  for  the 
ordinary  musical  student  to  use  the  violin. 

If  a  minor  6th,  G  and  B,  as  in  fig.  59,  is  played  loudly  on 
the  two  top  strings  the  differential  D  is  plainly  heard.  Most 
violinists  think  this  sound  is  due  to  the  vibration  of  the  open 
D  string;  but  this  is  not  the  case,  although  in 

time  the  open  string  does  reinforce  the  differ- 
ential. But  if  the  D  string  is  damped  by  the 

finger  at  an  early  stage  the  differential  is  not 
affected ;  and  if  the  notes  are  changed  to  A  flat  and  C  the 
differential  rises  a  semitone  at  once  without  apparently  losing 
any  of  its  intensity. 

Helmholtz  invented  an  instrument  called  the  Double  Syren 

for  the  purpose  of  tracing  differentials,  and  though  a  descrip- 
tion of  it  would  be  too  elaborate  to  undertake  here  every 

student  who  has  access  to  a  physical  laboratory  should  make 

acquaintance  with  it.  A  few  minutes'  experimenting  is  suffi- 
cient to  convince  any  one  that  differentials  are  not  occasional 

accidents,  but  the  invariable  result  of  simultaneous  sounds. 
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Differentials  generated  by  two  independent  tones,  such  as 
we  have  been  dealing  with,  are  called  Differentials  of  the  first 
order.  There  are  also  differentials  of  the  second  order, 

generated  between  either  independent  note  and  the  first  order 
differential;  and  again  differentials  of  the  third  order, 

generated  between  those  of  the  second  order  and  their  pre- 
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(whose  vibration-fraction  is  f )  we  get  the  following  results : 

Differential  of  the  first  order :        8  —  5=3  [D-   " 

Differentials  of  the  second  order  :  8  —  3  =  5  (already  sounding) 

Differentials  of  the  third  order :     8  —  5  =  3  (already  sounding) 

8-2  =  6 

5  —  2  =  3  (already  sounding) 

3-..-.I 

Three  considerations  are  worth  noticing : 
(1)  Differentials  are  produced  amongst  themselves,  and  not 

between  one  of  themselves  and  any  overtone. 

(2)  Although  any  differentials  but  those  of  the  first  order 
are  exceedingly  difficult  to  hear,  and  become  of  less 
and  less  actual  importance,  yet  their  presence  can  be 
proved,  and  they  are  not  mere  theoretical  inventions. 
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(3)  Overtones  do  generate  differentials  of  their  own,  but 

they  can  be  ignored  for  practical  purposes. 

Summation  Tones.  These  are  sounds  whose  pitch  corre- 

sponds to  the  sum  of  the  vibration-numbers  of  two  generators. 

Thus  two  notes  whose  frequencies  are  200  and  150  will 

generate  a  summation  tone  whose  frequency  is  350. 

These  tones  are  extremely  difficult  to  hear,  and  their  im- 
portance is  generally  considered  to  be  small ;  and  if  a  student 

is  aware  of  their  existence  and  nature  he  will  have  no  cause 

to  inquire  further  in  an  elementary  study  of  Acoustics. 

Reference  has  already  been  made  (p.  102)  to  the  question  of 

the  harsh  effects  caused  by  clashing  overtones  in  the  playing 

of  thirds  on  a  tempered  instrument.  At  this  point  we  may 

draw  attention  to  the  difference,  with  regard  to  partials  and 

differential  tones,  between  the  major  and  minor  common 
chord. 

When  we  hear  the  notes  C,  E  flat,  G  sounded  we  also  hear, 

if  each  note  is  a  clang,  the  harmonic  chord  of  each.  Under 

certain  circumstances  a  keen  ear  will  find  this  chord  very 

unpleasant,  because  of  (as  fig.  60  will  show)  (i)  the  'curdling' 
of  the  overtones,  and  (2)  the  curdle  between 

the  prime  E  flat  and  the  E  natural  which 

is  such  a  prominent  overtone  to  C.  Com- 
posers did  not  take  long  to  find  out  that  a 

major  chord  was  far  more  harmonious  and 
FIG.  60 

smooth,  since  the  only  objectionable  partials 

to  E  natural  (the  3rd,  b'  and  the  5th  g"  sharp)  were  not 
strong  enough  to  be  really  offensive.  Consequently  they 
formed  the  habit  of  ending  minor  compositions  with  a  major 

chord,  and  the  major  3rd  acquired  the  nickname  of  Tierce 
de  Picardie. 

It  is  often  forgotten  that  in  the  days  when  this  custom  grew 

up  equal  temperament  was  in  its  infancy.  Composers  wrote 

chiefly  for  the  organ  (tuned  to  Mean-tone  Temperament)  or 
for  voices  or  strings  which  would  sing  and  play  true  thirds. 
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In  these  conditions  the  change  from  an  E  flat  to  an  E  natural 

which  was  in  tune  ̂ mth  the  E  already  sounding  as  a  partial 

of  C  was  a  really  important  improvement.  But  nowadays, 

when  even  our  organs  are  tuned  with  false  thirds,  it  is  doubtful 

whether  the  major  chord  could  be  considered  in  any  way 

more  harmonious  than  the  minor,  if  the  partials  alone  decided 
the  matter. 

When,  however,  we  look  at  the  differentials  of  the  two 

chords  it  is  easy  to  see  that  another  element  of  great  inhar- 

moniousness  is  introduced.  In  the  major  chord  (see  fig.  61) 

all  the  three  differentials  of  the  first  order  have  the  pitch  of 

i 

Fio.  61 

C,  and  any  one  who  will  trouble  to  work  out  the  differentials 

of  the  second  order  will  find  that  they  introduce  no  new  note. 

The  minor  chord,  on  the  other  hand,  gives  us  three  differentials 

of  the  first  order  of  which  one  is  A  flat— introducing  quite 
a  new  discordant  element ;  and  the  second  order  differentials 
introduce  another  A  flat  and  a  new  note  B  flat  as  well. 

We  are  therefore  justified  in  feeling  that,  even  in  equal 

temperament,  the  smoothness  of  the  minor  chord  is  adversely 

affected  by  the  differentials  it  produces,  and  so  is  less  than 

that  of  the  major  chord  which  is  not  interfered  with  in  any 

way  from  this  cause. 



CHAPTER   XIX 

PHASE  AND  INTERFERENCE 

IF  we  represent  a  certain  distance  of  calm  unruffled  water — 
say  20  feet — by  the  straight  line  AE  of  fig.  62,  and  imagine 
that  its  surface  is  suddenly  agitated  by  a  system  of  waves 
20  feet  in  length  advancing  from  the  direction  of  A,  then  the 
water  will  take  some  such  form  as  the  curve  ABCDE. 

But  in  drawing  the  above  curve  we  have  pictured  the  2o-feet 
wave  at  the  moment  it  exactly  filled  the  chosen  20 -feet  space ; 
and  it  is  obvious  we  might  have  chosen  any  other  moment. 

If,  for  instance,  we  started  drawing  it  at  the  point  a1,  or  «2, 
the  curve  would  be  identical  in  shape  with  ABCDE,  but  would 

be  shifted  a  little  to  the  right  and  would  end  at  e1  or  e2. 
The  only  difference  between  the  various  waves  so  drawn 

being  their  starting- place,  they  are  said  to  be  exactly  similar 
waves  in  a  different  phase. 

In  the  same  way,  the  vibrations  in  the  air  between  the  origin 
of  a  simple  sound  and  the  ear  are  exactly  similar,  but  if  we 
could  isolate  a  number  of  them  for  examination  we  might  find 
we  had  one  specimen  just  beginning  its  condensation,  another 
just  beginning  its  rarefaction.  Provided,  however,  we  had 

secured  a  full  vibration-length  in  each  case,  every  specimen 
would  be  a  replica  of  all  the  others  except  for  its  phase. 
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That  is,  if  we  revert  to  the  associated  wave  instead  of  the 

vibration  itself,  we  might  find  one  wave  was  the  curve  ABODE, 

another  the  wave  between  the  perpendiculars  from  aA  and  <?3. 
Let  us  now  examine  the  case  of  two  simultaneous  sounds 

which  are  in  every  way  equal.  They  can  be  represented  by 
two  associated  waves  also  exactly  similar.  If  these  sounds 
begin  at  the  same  instant  then  the  resultant  sound,  as  was 

pointed  out  in  the  previous  chapter,  will  be  represented  by 
a  wave  of  exactly  twice  the  amplitude  :  that  is  to  say,  by  the 
firetj^wjaflnten^ity. (p.  46)  it  will  be  four  times  as  loud. 

Should  one  sound^  however,  start  just  that  fraction  ot 
a  seconcflater  than  the  other  which  would  cause  it  to  begin 
its  condensation  at  the  exact  instant  the  earlier  sound  was 

FIG.  63 

beginning  its_rarefactionthe  result,  expressed  in  associated 
waves,  would  be  that  of  fig.  63. 

In  the  above  case  the_resull^_jinexpected  as  it  may  seem, 

»t  and  the  phases  are  said  to  be  in 
exact  opposition. 

It  is,  naturally,  far  more  likely  that  the  two  phases  will 
neither  coincide  nor  be  in  exact  opposition,  so  that  the  result 
of  the  two  sounds  will  be  something  between  silence  and 
a  volume  of  sound  four  times  as  great  as  either  sound  alone. 

From  fig.  63  it  is  clear  that  the  dotted  curve  (representing 
the  sound  which  starts  late)  may  begin  anywhere  between  A 
and  C.  If  it  starts  at  A  the  resultant  has  four  times  the 

intensity  of  the  individual  sounds  ;  as  it  moves  towards  B  the 

volume  of  the  resultant  decreases  to  zero  ;  as  it  passes  from  B 
to  C  the  volume  of  the  resultant  increases  to  four  again.  Thus 
there  are  only  two  exact  instants  at  which  the  second  sound 
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can  start  in  order  that  the  resultant  volume  may  be,  what  we 

should  have  expected  it  always  would  be,  double  the  individual 
sound. 

Students  who  meet  for  the  first  time  with  Interference 

(which  is  the  technical  name  given  to  such  phenomena  as  the 

above,  when  several  vibration-systems  occur  simultaneously  in 
a  medium)  are  apt  to  regard  it  as  purely  theoretical.  But  it  is 

open  to  any  one  to  make  acquaintance  with  its  practical  truth 

by  experiments  with  a  tuning-fork.  When  a  fork  vibrates 
the  prongs  separate  and  come  together  again.  Consequently 

_two_systems  of  vibration  are  communicated  to  the  air  at  the 

moment  the  prongs  have  come  close  together  (i.  e.  the  moment 

of  striking) : 

1 i )  Rarefaction  on  the  outside  of  each  prong ; 

(2)  Condensation  at  the  back  and  front  of  the  prongs,  due 

to  the  compression  of  air  between  the  prongs. 

Fig.  64,  in  which  the  black  oblongs  represent  the  two  tops 

of  the  prongs,  will  illustrate  this : 

N 

NW, NE 

W 

svv SE 

S 
FIG.  64 

As  the  tops  of  the  prongs  in  fig.  64  come  together  a  rare- 
faction is  caused  north  and  south  ;  and  at  the  same  moment 

a  condensation  is  thrown  out  east  and  west.  And  when  the 

prongs  fly  away  from  each  other  the  reverse  process  takes 

place. 
Now  these  two  simultaneous  processes,  caused  by  the  same 
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prongs,  -must  start  with  phases  in  exact  opposition.  Conse- 
quently as  a  rarefaction  spreads  out  from  N  westwards  it  will 

encounter  an  equal  condensation  travelling  from  w  northwards ; 
and  along  the  line  NW  these  two  systems  must  cancel,  as  along 
the  lines  NE,  SE,  SW,  also. 

This  is  exactly  what  does  occur,  as  may  be  proved  by  any 

one  who  will  strike  a  tuning-fork,  hold  it  vertically  to  his  ear, 
and  then  revolve  it.  When  a  flat  side  is  opposite  the  ear  we 
have  the  full  volume  of  sound,  and  when  an  angle  presents 
itself  we  have  either  silence,  or  something  sufficiently  near 
silence  to  convince  the  listener  of  the  reality  of  Interference. 

When  we  think  of  a  big  chord  sounded  by  a  large  orchestra, 
organ,  and  chorus,  and  remember  that  every  individual  sound 
made  by  every  individual  player  and  singer  is  producing 
different  partials  owing  to  difference  in  quality,  we  can  form 
some  notion  of  the  bewildering  complexity  of  the  processes 
in  the  air  which  combine  these  myriads  of  vibrations  into  one 

resultant  and  bring  this  instantaneously  to  our  ears  for  analysis. 

But  Fourier's  Theorem  establishes  the  fact  that  such  a  re- 

sultant can  be  analysed,  and  the  complementary  Ohm's  Law 
lays  down  that  the  ear  has  the  required  analytical  power. 

Helmholtz  came  to  the  conclusion  that  though  difference  of 
phase,  by  continually  altering  the  amplitude  of  the  resultant 
vibrations,  does  continuously  affect  the  intensity  of  sound,  yet 
it  never  affects  the  quality.  From  this  he  drew  the  inference 
that  the  vibrations  of  overtones  do  not  cancel  each  other ;  that 
is  to  say,  since  any  two  sets  of  compound  vibrations  do  not, 

on  meeting,  resolve  themselves  into  groups  of  simple  vibration, 
we  can  say  that  the  simple  vibrations  of  individual  partials  do 
not  eliminate  each  other  should  they  happen  to  be  in  opposite 
phases.  It  is  probably  safe  to  say,  however,  that  this  branch 
of  Acoustics  awaits  further  research  before  any  conclusions 
can  be  considered  as  final;  and  what  has  been  said  on  the 

subject  of  Interference,  though  little,  embraces  practically  all 
that  could  be  considered  of  interest  to  the  musical  student. 
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CONSONANCE,  DISSONANCE,  AND  BEATS 

WE  have  now  to  examine  what  happens  when  two  pure 
musical  sounds,  differing  slightly  in  pitch,  begin  at  precisely 
the  same  moment. 

Consider  what  happens  when  two  people  walk  together  at 
the  same  pace,  but  with  strides  of  different  length.  If  a  man 
and  a  child  start  walking  simultaneously  by  putting  their  left 
feet  to  the  ground  at  the  same  instant,  and  the  child  takes 

three  double-steps  (i.  e.  six  strides)  to  the  man's  two,  then  as 
the  man  begins  his  third  double-step  the  child  will  be  beginning 
its  fourth,  at  the  same  instant  and  with  the  same  foot — the  left. 
Their  tracks  in  snow,  so  long  as  their  pace  and  stride  are 
uniform,  will  look  like  fig.  65  repeated  ad  libitzim  : 

Man    c^>  .^ 

Child   ̂   ^ FIG.   65 

The  reader  should  notice  the  important  fact  that  at  the  half- 
way point  the  diagram  looks  as  if  the  walkers  had  fallen  into 

step ;  but  it  is  really  the  point  where  their  phases  are  in  exact 
opposition,  the  man  putting  down  his  left  foot  as  the  child 
steps  on  to  the  right. 

Let  us  now  examine  wave-curves,  taking  the  slightly  more 

complicated  case  of  two  waves  whose  lengths  are  in  the  pro- 
portion of  6 :  5. 

If  we  draw  along  a  line  AB  a  series  of  six  uniform  waves, 
and  then  along  the  same  line  a  series  of  five,  it  will  be  clear 

(fig.  66) : 
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(  )  That  the  two  wave  systems  are  in  opposite  phases  at 
the  half-distance ; 

(  )  That  they  cannot  get  into  the  same  phase  between  A  and 
B,  but  only  at  the  points  A  and  B. 

FIG.  66 

As  soon  as  we  consider  the  curves  of  fig.  66  to  be  the  waves 
of  two  simple  sounds  we  can  see  that  between  the  coincidence 
of  phase  at  A  and  the  coincidence  at  B  the  resultant  will  start 
with  an  amplitude  almost  double  that  of  either  individual 

curve  (in  fig.  66  the  amplitudes  are  equal),  and  will  reach  a 

point  half-way  where  the  amplitudes  momentarily  cancel,  and 
finally  will  reach  B  when  the  amplitude  is  again  almost  double. 

This  means  that  when  two  sounds  whose  vibration-numbers 

bear  the  ratio  6 : 5  are  simultaneousTy^sounded  with  equal 
force  the  intensity  of  the  resultant  will  not  be  a  constant  and 

steady  quantityjJmMvill  throb  between  a  quantity  ahnost-four 

times  as  great  as  that  of  either  single  sound  and  a  quantity^so 
small  as  to  be  practically  silence. 

Each  such  throb  is  called  a  Beat. 

The  number  of  beats  caused  by  any  two  simultaneous 

sounds  is  found  by  subtracting  their  frequencies.  If  we  take 
two  imaginary  sounds  whose  frequencies  are  5  and  6,  then 
fig.  66  shows  that  we  should  get  one  beat  per  second.  If  the 
frequencies  were  10  and  12  there  would  be  two  beats  per 

second,  for  obviously  the  curves  of  fig.  66  would  repeat  them- 
selves, and  two  sets  would  represent  the  process  of  each 

second.  Similarly  two  notes  with  frequencies  97  and  100  will 
produce  three  beats  per  second,  and  so  on. 

Many  students  find  the  above  process  a  little  difficult  to  grasp, 
and  they  may  be  assisted  by  the  following  illustration.  If  two 
garden  swings  are  started  together  at  different  rates  so  that  the  longer 
completes  97  full  vibrations  while  the  shorter  completes  100,  it  is 
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clear  that  the  two  swings  will  start  their  gSih  and  joist  vibration  at 
the  same  instant,  and  in  the  same  direction  as  that  from  which  they 
originally  started. 

Meanwhile  the  child  in  the  quicker  swing  has  caught  the  child  in 
the  slower  three  times ;  and  on  each  occasion  both  children  were 

moving  in  the  same  direction.  And  in  the  case  of  sound-waves  these 
three  moments  (which  would  obviously  be  seven  if  the  ratio  of  the 
swings  was  93  :  100)  will  cause  the  throbs  which  we  call  beats. 

On  any  instrument  with  sustained  sounds,  such  as  the  organ 

or  harmonium,  it  is  very  easy  to  hear  the  beats  of  small 

intervals,  especially  in  the  lower  regions  of  the  keyboard. 

When  the  lowest  C  of  a  harmonium  is  held  down  together 

with  the  semitone  above  it  we  do  not  hear  a  result  of  steady 

intensity,  but  rather  a  swirling  and  throbbing  sound  which 

wilt  convince  any  one  of  the  truth  already  enunciated :  that 

the  intensity  varies  between  zero  and  a  quantity  four  times 

as  great  as  that  of  either  individual  sound.  And  though  the 

throbbing  becomes  less  noticeable  as  we  widen  the  interval 

or  raise  the  pitch,  the  process  at  work  in  the  air  is  of  an 

exactly  similar  nature. 

Beats  are  sometimes  intentionally  used  for  definitely  musical 

purposes;  as  in  the  Voix  Celestes  stop  on  the  organ,  in  which 

each  note  is  produced  by  two  pipes  slightly  out  of  tune  with 
each  other.  Tuners  of  instruments  also  make  considerable 

use  of  beats,  especially  when  gauging  the  pitch  of  very  low 
notes. 

In  the  case  of  pure  musical  sounds  beats  may  arise 

(!)  between  the  tones  themselves  ; 

(2)  between  their  combination-tones.—, 
In  the  case  of  clangs  beats  may  arise 

(1)  between  the  primes; 

(2)  between  one  prime  and  the  overtones  of  the  other ;" 
(3)  between  the  overtones  of  one  and  the  overtones  of  the 

other ; 

(4)  between  combination-tones. 
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Beats  may  also  arise  between  the  overtones  of  a  single  clang, 

and  it  is  usual  to  attribute  harshness  of  quality  to  this  cause. 

Good- '  voicing '  of  an  organ-pipe  aims  at  eliminating  such 
beats,  and  when  it  fails  we  get  a  stop  with  a  certain  blatancy. 

Every  organist  has  come  across  a  '  clarinet '  which  is  only 
bearable  when  used  together  with  a  flute,  i.  e.  with  something 

which  will  affect  the  relative  intensity  of  the  overtones  and  so 

modify  or  obscure  the  beats  which  cause  the  harshness. 

The  effect  of  beats  must  be  added  to  the  causes  already 

given  (p.  135)  in  justification  of  the  Tierce  de  Picardie. 

All  Dissonance  is  attributed  to  Beats. 

When  two  pure  musical  sounds  are  in  unison  they  produce 

no  beats,  but  if  we  sharpen  or  flatten  one  of  them  beats 

immediately  arise.  So  long  as  the  number  of  these  is  small 

in  comparison  to  the  vibration -numbers  of  the  notes  the  effect 

is  not  unpleasant — no  one,  for  instance,  objects  to  the  Voix 
Celestes  on  the  ground  that  it  is  harsh  or  dissonant ;  but_as 

the  interval  between  the  notes  is  increased  the  unpleasantness 

asserts  itself  more  positively  up  to  a  point,  and  then  subsides 

until  all  trace  of  dissonance  entirely  disappears.  The  interval 

at  which  this  disappearance  takes  place  is  called  the  Beating- 

distance,  and  in  the  region  of  middle  C  musicians  are  unani- 

mous in  fixing  it  at  a  minor  3rd.  That  is  to  say,  if  two 

instruments  producing  pure  tones,  and  each  tuned  to  middle  C, 

begin  vibrating  together,  no  beats  result.  As  soon  as  we 

sharpen  one  of  the  notes  beats  occur,  but  are  not  unpleasant 

so  long  as  they  are  few  in  number.  Unpleasantness,  how- 

ever, soon  becomes  definite,  and  jhemaxinmm of  dissonance 
occurs  at  about  thejnturval  nf  njymitnne ;  but  when  we  reach  . 

the  minor  3rd  all  dissonance  has_vanjshed. 

At  a  lower  pitch  the  beating-distance  is  greater  than  a 

xi  y  minor  3rd,  at  a  higher  pitch  less  ;  and  this  explains  the  fact, 
/       which  is  common  knowledge  to  musicians,  thaLgmall  intervals 

are  less  dissonant  in  the-upper_ranges_than  in  the  4ewer^  and 
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that  a  chord  for  trombones  must  not  be  '  spaced  '  as  it  might 
be  for  flutes. 

In  the  case  of  two  compound  sounds,  or  clangs,  the  beating- 
distance  cannot  be  placed  at  a  minor  3rd  in  the  region  of 

middle  C,  because  of  the  beats'  which  may  arise  other  than 
those  of  the  prime  tones. 

Beats  arising  between  the  overtones  of  a  single  clang  are  of 
essential  importance  in  determining  quality;  and  amongst 

these  the  rule  holds  good  that  their  beating-distance  is  a 
minor  3rd  in  the  region  of  middle  C.  Sounds  from  stopped 
pipes  are,  as  every  organist  knows,  of  singular  smoothness, 
and  when  we  consider  that  all  the  even  -numbered  partials  are 
absent  from  them  we  see  that  the  opportunities  for  beats  are 
enormously  restricted. 

In  the  same  way  the  string  of  a  violin  or  'cello  will,  if  the 
bow  is  applied  to  the  centre  of  the  string,  produce  a  tone 
so  lacking  in  richness  as  to  be  almost  dull.  The  reason  is 
that  when  the  centre  point  of  the  string  is  agitated  it  cannot 

be  a  node,  and  consequently  all  the  even  -numbered  partials, 
which  require  a  node  at  that  point,  are  absent.  Similarly,  it 
is  a  matter  of  great  importance  whereabouts  the  hammer  hits 

a  piano-string,  and  many  experiments  have  been  made  in 
quest  of  the  point  that  will  destroy  only  undesirable  over- 
tones. 

On  the  other  hand,  all  brass  instruments  owe  their  brilliance 

and  penetration  to  the  presence  of  upper  partials  in  great 
number  and  strength  ;  and  these  upper  partials,  being  close 
to  each  other  in  pitch,  produce  amongst  themselves  beats  in 
abundance. 

It  has  been  established  for  us  by  physicists  that  one  of  the 
conditions  of  consonancen5eTweeit-twfr-nuLe&  ly  lhat  tne 
tion-fraction  of  the   interval  between  them  shall   involve  no 

odd  number  greater  than  five. 
If  we  desire,  then,  to  find  the  vibration-fractions  of  all  the 

concords  in  an  octave  we  have  to  find  all  the  possible  fractions 
2106  K 
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between  i  and  2  which  require  no  odd  number  greater  than 

5.     These  are : 
^,  f  (any  others  with  denominator  i  will  exceed  2). 

|  (f  and  f  merely  reduplicate  £  and  f ). 
4      5 

x     3>  •?• 
5 

6     8 •51  y 

From  this  table  we  can  make  a  list  of  eight  concords  within 
the  octave  as  follows : 

1.  Unison,  £. 

2.  Minor  3rd,  f . 

3.  Major  3rd,  f . 
4.  Fourth,  £. 

5.  Fifth,  f . 
6.  Minor  6th,  f . 

7.  Major  6th,  f . 
8.  Octave,f 

The  above  intervals,  perfectly  concordant  where  pure 
sounds  are  concerned,  acquire  dissonance  in  varying  degree 
when  the  sounds  forming  the  intervals  are  clangs. 

The  unison  and  octave  are  free  from  dissonance  because 

the  harmonic  chords  are  the  same.  This  is  obviously  true  of 
the  unison,  and  in  the  case  of  the  octave  it  is  clear  (fig.  67) 

that  tne  partials  of  the  higher  note  introduce  no  sound  that 
would  not  find  a  place  amongst  the  partials  of  the  lower. 

FIG.  67 

The  interval  which  comes  next  in  smoothness  is  the  Fifth, 
though  in  this  (fig.  68)  there  are  obviously  several  dissonant 
partials  present. 

It  is  an  interesting  fact,  though  not  of  great  importance  to 
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musicians  (since  in  such  matters  they  rely  on  instinct  and 
experience),  that  the  various  consonant  intervals  were  arranged 
by  Helmholtz  in  order  of  comparative  harmoniousness  as 
follows : 

1.  Octave  and  unison. 
2.  Fifth. 

3.  Fourth,  major  3rd,  major  6th. 
4.  Minor  3rd. 
5.  Minor  6th. 
Chords.  If  there  are  three  notes  in  a  chord,  x,  y,  z,  the 

smoothness  of  the  chord  will  depend  on  three  relationships  : 
x  to  y :  lowest  to  middle  note. 
y  to  2 :  middle  to  top  note. 
x  to  z  :  lowest  to  top  note. 
When  the  vibration-fractions  of  these  three  intervals  are  all 

of  them  amongst  the  eight  concordant  intervals  given  on  p.  146, 
the  resultant  chord  is  a  concord.  Of  these  there  are,  within 
the  octave,  six  and  no  more: 

Lower  interval Higher  interval 
Interval  of 

outside  notes Chord 

minor  3rd     § 

minor  3rd     f 

major  3rd     f 

major  3rd      J 

4th                f 

4th                f 
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4th                 § 
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4th                § 
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CHAPTER   XXI 

IT  is  only  proposed  to  give  the  barest  outline  of  the  con- 
struction of  the  Ear,  in  order  that  the  student  may  form  a 

general  idea  of  what  happens  to  air-vibrations  when  they 
finally  reach  the  listener. 

The  ear  has  three  distinct  sections,  External,  Middle,  and 
Internal,  and  these  will  be  dealt  with  in  order. 

External  Ear.  This  consists  of  the  Lobe,  which  collects 

vibrations,  and  a  tube  (about  i£  inches  long)  down  which  they 
are  directed.  At  the  end  of  this  tube  the  vibrations  strike 

against  the  drum  of  the  ear,  or  Tympanum,  which  closes  the 

passage ;  and  the  Tympanum  then  passes  the  vibration  system 
on  to  the  middle  ear. 

Middle  Ear.  This  is  an  air-chamber  whose  walls  are 

almost  entirely  of  bone.  There  is  a  passage  to  the  throat 

(called  the  Eustachian  Tube)  and  two  small  membrane-covered 
holes,  one  round,  the  other  oval,  called  Fenestra  rotunda  and 

Fenestra  ovalis.  The  upper  one  of  these,  the  Fenestra  ovalis, 

is  joined  to  the  Tympanum  by  a  series  of  three  small  bones— 
the  Malleus  (attached  to  the  Tympanum),  which  is  sometimes 
called  the  Hammer  bone,  the  Stapes,  or  Stirrup  bone  (attached 
to  the  membrane  covering  the  Fenestra  ovalis),  and  the  Incus ^ 
or  Anvil,  which  lies  between  the  other  two  and  is  attached  to 
both  of  them. 

Every  vibration  of  the  Tympanum  is  faithfully  conveyed 
by  this  series  of  bones  to  the  membrane  covering  the  Fenestra 
ovalis,  and  is  in  this  way  communicated  to  the  Internal  Ear. 

Internal  Ear.  The  construction  of  the  Internal  Ear  is 

exceedingly  intricate,  and  it  is  still  a  matter  of  speculation 
as  to  what  are  the  specific  functions  of  its  individual  parts. 

Roughly,  we  may  say  that  it  contains  a  membranous  bag 
filled  with  a  fluid  called  Endolympk,  and  that  this  bag  floats 
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in  a  fluid  called  Pertlymph,  which  is  kept  out  of  the  middle 

ear  by  the  membranes  covering  the  round  and  oval  apertures. 
The  vibrations  are  communicated  from  the  membrane  of 

the  Fenestra  ovalis  to  the  perilymph,  and  through  the  walls 

of  the  floating  bag  to  the  endolymph ;  and  the  end  of  the 
auditory  nerve  has  its  tentacles  embedded  in  the  latter.  One 

membrane  through  which  the  vibrations  must  pass  (called  the 

Basilar  Membrane)  is  composed  of  a  set  of  fibres  (the  Fibres 

of  Cor  ft)  of  increasing  lengths  laid  alongside  one  another 

rather  like  the  strips  of  glass  or  metal  in  a  child's  Celesta. 
There  are  over  3,000  of  these  fibres,  giving  about  400  to 

the  octave  within  the  limits  of  recognizable  pitch,  and 

Helmholtz  suggests  that  each  is  tuned  to  a  note  of  a  certain 

pitch  and  vibrates  in  sympathy  with  that  pitch  when  the 
vibrations  of  such  a  note  reach  the  inner  ear. 

Reference  has  already  been  made  to  Fourier's  Theorem, 
which  establishes  the  fact  that  any  periodic  vibration,  however 

complex,  can  be  analysed  into  a  number  of  simple  vibrations 

of  definite  relationship ;  and  Ohm's  Law  establishes  the  fact 
that  the  ear  can  and  does  so  analyse  the  complex  vibrations 

presented  to  it. 

If  we  were  to  mix  together  a  large  number  of  colours  on 

a  palette  no  human  eye  could,  from  a  glance  at  the  resultant, 

do  more  than  guess  at  the  presence  of  a  few  individual  shades. 

If  we  mix  together  numerous  kinds  of  food  or  drink,  the  most 

experienced  taster  could  only,  after  many  smackings  of  the 

lips,  suggest  a  few  of  the  constituents.  But  if  we  hear  a  big 

chord  sounded  by  orchestra  and  chorus  the  average  listener  can 

immediately  detect  the  presence  of  voices,  organ,  strings,  brass, 

drums,  and  what  not,  and  the  trained  ear  of  the  expert  will 

instantaneously  and  certainly  declare  so  many  facts  about  what 

he  has  heard  in  a  fraction  of  a  second  that  we  may  justifiably 

claim  the  ear  to  be,  in  accuracy  of  result  not  less  than  in 

rapidity  of  working,  the  most  delicate  and  efficient  organ  of 

the  human  body. 
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Chladni's  plates,  84. 
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Enharmonic  Diesis,  93. 
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Gallon's  whistle,  33. 
Generators,  131. 
Geometrical  progression,  63. 
Graphic  method,  23. 

Hammer  bone,  148. 
Harmonic  chord,  67. 

motion,  119. 

progression,  62. 
Harmonics,  66. 
Heat,   its   effect  on   sound,   c.   ix, 

PP-  55.  ISO- High  sounds,  17. 
Hooke's  Law,  20. 

Incus,  148. 
Indices,  86. 
Instruments,  musical,  c.  ix,  p.  55. 
Intensity,  17,  and  c.  vii,  p.  45. 
Interference,  137. 
Internal  ear,  148. 
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Length  of  air- waves,  125. 
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Loudness,  c.  vii,  p.  45. 
Low  sounds,  17. 
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Malleus,  148. 
Manometric  flames,  23,  36. 

Mariotte's  Law,  41. 
Mass,  19. 
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Measurement  of  pitch,  c.  v,  p.  34. 
Medium,  15. 
Middle  ear,  148. 
Minor  tone,  92. 
Mixtures,  103. 
Modulus,  73. 
Monochord,  36. 
Motion,  nature  of,  c.  xv,  p.  107. 
Musical  instruments,  c.  ix,  p.  55. 

Nature  of  motion,  c.  xv,  p.  107. 
Nodes,  77. 
Noise,  24. 
Nomenclature  of  notes,  17. 

Oboe,  60,  85. 

Ohm's  Law,  140,  149. 
Open  pipes,  80. 
Opposition  of  phase,  138. 
Ordinate,  118. 
Oscillation,  14. 
Overtones,  66. 
Overtone  beats,  145. 

Partial  tones,  c.  xi,  p.  65. 
Table  of,  73. 

Pendulum-motion,  c.  iii,  p.  26. 

Percussion,  instruments  of,  60. 
Perfect  intonation,  91. 
Perilymph,  149. 
Periodic  motion,  15. 
Phase,  137. 
Philosophic  pitch,  37. 
Pipes,  length  of,  72. 

vibrations  of,  80. 
Pitch,  absolute,  30. 

limits  of  audible,  33. 
nature  of,  17. 
New  Philharmonic,  38. 
Philosophic,  37. 
standards  of,  37. 

Plates,  Chladni's,  84. Position,  curves  of,  113. 
Potential  energy,  29. 
Prime  tone,  67. 
Production  of  sound,  c.  ii,  p.  21. 
Pythagorean  comma,  93. 
Temperament,  95. 

Quality,  17,  55. 

Rarefaction,  17. 
Ratchet  wheel,  34. 

Ratios  of  vibration-numbers,  68. 
Reed  instruments,  58. 
Reeds,  beating,  59. 

free,  60. 
Reflection  of  sound,  48. 
Refraction  of  sound,  49,  129. 
Reinforcement,  49. 
Resonance,  c.  viii,  p.  48. 
Resonators,  53. 

Resultant  tones,  131. 

Savart's  wheel,  34. 
Sharpness,  17. 
Simple  sounds,  65. Siren,  35. 

Sonometer,  36. 
Sound,  intensity  of,  45. 

nature  of,  13. 
pitch  of,  33. 
production  of,  10,  c.  ii,  p.  21. 
quality  of,  17,  55,  76. 
reflection  of,  48. 
refraction  of,  49,  129. 
simple,  65. 
transmission  of,  Pt.  VI,  p.  107. 
velocity  of,  16. 

Sound-boards,  53. 
Standards  of  pitch,  37. 
Stapes,  148. 
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Stopped  pipes,  81,  145. 
Strings,  vibration  of,  57,  77. 
Subtraction  of  intervals,  74. 
Summation  tones,  131. 
Sympathetic  vibration,  47. 

Table  of  partial  tones,  73. 

Tartini's  harmonics,  131. 
Temperament,  91. 

Equal,  99. 
Mean-tone,  95. 
Pythagorean,  95. 

Temperature,  56,  118. 
Tension,  20. 
Tierce  de  Picardie,  135,  144. 
Timbre,  c.  xii,  p.  76. 
Tone,  major  and  minor,  92. 
Tonometer,  37. 
Toothed  wheel,  34. 
Transverse  vibrations,  57. 
Triangle,  24. 
Trough,  31. 
True  intonation,  91. 
Twelfth  root  of  two,  c.  xiii,  p.  86. 
Tympanum,  148. 

Variation,     direct     and     inverse, 

39  ff. 

Velocity,  16. 
Vibration-fractions,  68. 
Vibration-numbers,  25. 
Vibrations,  amplitude  of,  14,  31. 

compound,  128. 
nature  of,  14. 
of  plates,  84. 
simple,  65. 
sympathetic,  47. 

Vibroscope,  36. 
Violin,  53. 

Voice,  51. 
Voicing,  144. 
Voix  celestes,  143. 
Volume,  19. 

Wave,  1 8. 
Waves,  Air-,  21,  c.  xvii,  p.  122. 
Weber's  Law,  109. Whistle,  55. 

Gallon's,  33. 
Wind  and  sound,  129. 
Wolf,  98. 
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